mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# -*- coding: utf-8 -*-
 | 
						|
# Copyright (c) Alibaba, Inc. and its affiliates.
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from einops import rearrange
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
 | 
						|
def convert_to_numpy(image):
 | 
						|
    if isinstance(image, Image.Image):
 | 
						|
        image = np.array(image)
 | 
						|
    elif isinstance(image, torch.Tensor):
 | 
						|
        image = image.detach().cpu().numpy()
 | 
						|
    elif isinstance(image, np.ndarray):
 | 
						|
        image = image.copy()
 | 
						|
    else:
 | 
						|
        raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
 | 
						|
    return image
 | 
						|
 | 
						|
class DepthV2Annotator:
 | 
						|
    def __init__(self, cfg, device=None):
 | 
						|
        from .dpt import DepthAnythingV2
 | 
						|
        
 | 
						|
        # Model configurations for different variants
 | 
						|
        self.model_configs = {
 | 
						|
            'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
 | 
						|
            'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
 | 
						|
            'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
 | 
						|
            'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
 | 
						|
        }
 | 
						|
        
 | 
						|
        # Get model variant from config, default to 'vitl' if not specified
 | 
						|
        model_variant = cfg.get('MODEL_VARIANT', 'vitl')
 | 
						|
        if model_variant not in self.model_configs:
 | 
						|
            raise ValueError(f"Invalid model variant '{model_variant}'. Must be one of: {list(self.model_configs.keys())}")
 | 
						|
        
 | 
						|
        pretrained_model = cfg['PRETRAINED_MODEL']
 | 
						|
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
 | 
						|
        
 | 
						|
        # Get configuration for the selected model variant
 | 
						|
        config = self.model_configs[model_variant]
 | 
						|
        
 | 
						|
        # Initialize model with the appropriate configuration
 | 
						|
        self.model = DepthAnythingV2(
 | 
						|
            encoder=config['encoder'], 
 | 
						|
            features=config['features'], 
 | 
						|
            out_channels=config['out_channels']
 | 
						|
        ).to(self.device)
 | 
						|
        
 | 
						|
        self.model.load_state_dict(
 | 
						|
            torch.load(
 | 
						|
                pretrained_model,
 | 
						|
                map_location=self.device,
 | 
						|
                weights_only=True
 | 
						|
            )
 | 
						|
        )
 | 
						|
        self.model.eval()
 | 
						|
 | 
						|
    @torch.inference_mode()
 | 
						|
    @torch.autocast('cuda', enabled=False)
 | 
						|
    def forward(self, image):
 | 
						|
        image = convert_to_numpy(image)
 | 
						|
        depth = self.model.infer_image(image)
 | 
						|
 | 
						|
        depth_pt = depth.copy()
 | 
						|
        depth_pt -= np.min(depth_pt)
 | 
						|
        depth_pt /= np.max(depth_pt)
 | 
						|
        depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
 | 
						|
 | 
						|
        depth_image = depth_image[..., np.newaxis]
 | 
						|
        depth_image = np.repeat(depth_image, 3, axis=2)
 | 
						|
        return depth_image
 | 
						|
 | 
						|
 | 
						|
class DepthV2VideoAnnotator(DepthV2Annotator):
 | 
						|
    def forward(self, frames):
 | 
						|
        ret_frames = []
 | 
						|
        for frame in frames:
 | 
						|
            anno_frame = super().forward(np.array(frame))
 | 
						|
            ret_frames.append(anno_frame)
 | 
						|
        return ret_frames |