mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			58 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# -*- coding: utf-8 -*-
 | 
						|
# Copyright (c) Alibaba, Inc. and its affiliates.
 | 
						|
import torch
 | 
						|
import numpy as np
 | 
						|
import argparse
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
def convert_to_numpy(image):
 | 
						|
    if isinstance(image, Image.Image):
 | 
						|
        image = np.array(image)
 | 
						|
    elif isinstance(image, torch.Tensor):
 | 
						|
        image = image.detach().cpu().numpy()
 | 
						|
    elif isinstance(image, np.ndarray):
 | 
						|
        image = image.copy()
 | 
						|
    else:
 | 
						|
        raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
 | 
						|
    return image
 | 
						|
 | 
						|
class FlowAnnotator:
 | 
						|
    def __init__(self, cfg, device=None):
 | 
						|
        from .raft.raft import RAFT
 | 
						|
        from .raft.utils.utils import InputPadder
 | 
						|
        from .raft.utils import flow_viz
 | 
						|
 | 
						|
        params = {
 | 
						|
            "small": False,
 | 
						|
            "mixed_precision": False,
 | 
						|
            "alternate_corr": False
 | 
						|
        }
 | 
						|
        params = argparse.Namespace(**params)
 | 
						|
        pretrained_model = cfg['PRETRAINED_MODEL']
 | 
						|
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
 | 
						|
        self.model = RAFT(params)
 | 
						|
        self.model.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(pretrained_model, map_location="cpu", weights_only=True).items()})
 | 
						|
        self.model = self.model.to(self.device).eval()
 | 
						|
        self.InputPadder = InputPadder
 | 
						|
        self.flow_viz = flow_viz
 | 
						|
 | 
						|
    def forward(self, frames):
 | 
						|
        # frames / RGB
 | 
						|
        frames = [torch.from_numpy(convert_to_numpy(frame).astype(np.uint8)).permute(2, 0, 1).float()[None].to(self.device) for frame in frames]
 | 
						|
        flow_up_list, flow_up_vis_list = [], []
 | 
						|
        with torch.no_grad():
 | 
						|
            for i, (image1, image2) in enumerate(zip(frames[:-1], frames[1:])):
 | 
						|
                padder = self.InputPadder(image1.shape)
 | 
						|
                image1, image2 = padder.pad(image1, image2)
 | 
						|
                flow_low, flow_up = self.model(image1, image2, iters=20, test_mode=True)
 | 
						|
                flow_up = flow_up[0].permute(1, 2, 0).cpu().numpy()
 | 
						|
                flow_up_vis = self.flow_viz.flow_to_image(flow_up)
 | 
						|
                flow_up_list.append(flow_up)
 | 
						|
                flow_up_vis_list.append(flow_up_vis)
 | 
						|
        return flow_up_list, flow_up_vis_list  # RGB
 | 
						|
 | 
						|
 | 
						|
class FlowVisAnnotator(FlowAnnotator):
 | 
						|
    def forward(self, frames):
 | 
						|
        flow_up_list, flow_up_vis_list = super().forward(frames)
 | 
						|
        return flow_up_vis_list[:1] + flow_up_vis_list |