mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			236 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			236 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Data loading based on https://github.com/NVIDIA/flownet2-pytorch
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
import torch.utils.data as data
 | 
						|
import torch.nn.functional as F
 | 
						|
 | 
						|
import os
 | 
						|
import math
 | 
						|
import random
 | 
						|
from glob import glob
 | 
						|
import os.path as osp
 | 
						|
 | 
						|
from .utils import frame_utils
 | 
						|
from .utils.augmentor import FlowAugmentor, SparseFlowAugmentor
 | 
						|
 | 
						|
 | 
						|
class FlowDataset(data.Dataset):
 | 
						|
    def __init__(self, aug_params=None, sparse=False):
 | 
						|
        self.augmentor = None
 | 
						|
        self.sparse = sparse
 | 
						|
        if aug_params is not None:
 | 
						|
            if sparse:
 | 
						|
                self.augmentor = SparseFlowAugmentor(**aug_params)
 | 
						|
            else:
 | 
						|
                self.augmentor = FlowAugmentor(**aug_params)
 | 
						|
 | 
						|
        self.is_test = False
 | 
						|
        self.init_seed = False
 | 
						|
        self.flow_list = []
 | 
						|
        self.image_list = []
 | 
						|
        self.extra_info = []
 | 
						|
 | 
						|
    def __getitem__(self, index):
 | 
						|
 | 
						|
        if self.is_test:
 | 
						|
            img1 = frame_utils.read_gen(self.image_list[index][0])
 | 
						|
            img2 = frame_utils.read_gen(self.image_list[index][1])
 | 
						|
            img1 = np.array(img1).astype(np.uint8)[..., :3]
 | 
						|
            img2 = np.array(img2).astype(np.uint8)[..., :3]
 | 
						|
            img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
 | 
						|
            img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
 | 
						|
            return img1, img2, self.extra_info[index]
 | 
						|
 | 
						|
        if not self.init_seed:
 | 
						|
            worker_info = torch.utils.data.get_worker_info()
 | 
						|
            if worker_info is not None:
 | 
						|
                torch.manual_seed(worker_info.id)
 | 
						|
                np.random.seed(worker_info.id)
 | 
						|
                random.seed(worker_info.id)
 | 
						|
                self.init_seed = True
 | 
						|
 | 
						|
        index = index % len(self.image_list)
 | 
						|
        valid = None
 | 
						|
        if self.sparse:
 | 
						|
            flow, valid = frame_utils.readFlowKITTI(self.flow_list[index])
 | 
						|
        else:
 | 
						|
            flow = frame_utils.read_gen(self.flow_list[index])
 | 
						|
 | 
						|
        img1 = frame_utils.read_gen(self.image_list[index][0])
 | 
						|
        img2 = frame_utils.read_gen(self.image_list[index][1])
 | 
						|
 | 
						|
        flow = np.array(flow).astype(np.float32)
 | 
						|
        img1 = np.array(img1).astype(np.uint8)
 | 
						|
        img2 = np.array(img2).astype(np.uint8)
 | 
						|
 | 
						|
        # grayscale images
 | 
						|
        if len(img1.shape) == 2:
 | 
						|
            img1 = np.tile(img1[...,None], (1, 1, 3))
 | 
						|
            img2 = np.tile(img2[...,None], (1, 1, 3))
 | 
						|
        else:
 | 
						|
            img1 = img1[..., :3]
 | 
						|
            img2 = img2[..., :3]
 | 
						|
 | 
						|
        if self.augmentor is not None:
 | 
						|
            if self.sparse:
 | 
						|
                img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid)
 | 
						|
            else:
 | 
						|
                img1, img2, flow = self.augmentor(img1, img2, flow)
 | 
						|
 | 
						|
        img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
 | 
						|
        img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
 | 
						|
        flow = torch.from_numpy(flow).permute(2, 0, 1).float()
 | 
						|
 | 
						|
        if valid is not None:
 | 
						|
            valid = torch.from_numpy(valid)
 | 
						|
        else:
 | 
						|
            valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000)
 | 
						|
 | 
						|
        return img1, img2, flow, valid.float()
 | 
						|
 | 
						|
 | 
						|
    def __rmul__(self, v):
 | 
						|
        self.flow_list = v * self.flow_list
 | 
						|
        self.image_list = v * self.image_list
 | 
						|
        return self
 | 
						|
        
 | 
						|
    def __len__(self):
 | 
						|
        return len(self.image_list)
 | 
						|
        
 | 
						|
 | 
						|
class MpiSintel(FlowDataset):
 | 
						|
    def __init__(self, aug_params=None, split='training', root='datasets/Sintel', dstype='clean'):
 | 
						|
        super(MpiSintel, self).__init__(aug_params)
 | 
						|
        flow_root = osp.join(root, split, 'flow')
 | 
						|
        image_root = osp.join(root, split, dstype)
 | 
						|
 | 
						|
        if split == 'test':
 | 
						|
            self.is_test = True
 | 
						|
 | 
						|
        for scene in os.listdir(image_root):
 | 
						|
            image_list = sorted(glob(osp.join(image_root, scene, '*.png')))
 | 
						|
            for i in range(len(image_list)-1):
 | 
						|
                self.image_list += [ [image_list[i], image_list[i+1]] ]
 | 
						|
                self.extra_info += [ (scene, i) ] # scene and frame_id
 | 
						|
 | 
						|
            if split != 'test':
 | 
						|
                self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo')))
 | 
						|
 | 
						|
 | 
						|
class FlyingChairs(FlowDataset):
 | 
						|
    def __init__(self, aug_params=None, split='train', root='datasets/FlyingChairs_release/data'):
 | 
						|
        super(FlyingChairs, self).__init__(aug_params)
 | 
						|
 | 
						|
        images = sorted(glob(osp.join(root, '*.ppm')))
 | 
						|
        flows = sorted(glob(osp.join(root, '*.flo')))
 | 
						|
        assert (len(images)//2 == len(flows))
 | 
						|
 | 
						|
        split_list = np.loadtxt('chairs_split.txt', dtype=np.int32)
 | 
						|
        for i in range(len(flows)):
 | 
						|
            xid = split_list[i]
 | 
						|
            if (split=='training' and xid==1) or (split=='validation' and xid==2):
 | 
						|
                self.flow_list += [ flows[i] ]
 | 
						|
                self.image_list += [ [images[2*i], images[2*i+1]] ]
 | 
						|
 | 
						|
 | 
						|
class FlyingThings3D(FlowDataset):
 | 
						|
    def __init__(self, aug_params=None, root='datasets/FlyingThings3D', dstype='frames_cleanpass'):
 | 
						|
        super(FlyingThings3D, self).__init__(aug_params)
 | 
						|
 | 
						|
        for cam in ['left']:
 | 
						|
            for direction in ['into_future', 'into_past']:
 | 
						|
                image_dirs = sorted(glob(osp.join(root, dstype, 'TRAIN/*/*')))
 | 
						|
                image_dirs = sorted([osp.join(f, cam) for f in image_dirs])
 | 
						|
 | 
						|
                flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*')))
 | 
						|
                flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs])
 | 
						|
 | 
						|
                for idir, fdir in zip(image_dirs, flow_dirs):
 | 
						|
                    images = sorted(glob(osp.join(idir, '*.png')) )
 | 
						|
                    flows = sorted(glob(osp.join(fdir, '*.pfm')) )
 | 
						|
                    for i in range(len(flows)-1):
 | 
						|
                        if direction == 'into_future':
 | 
						|
                            self.image_list += [ [images[i], images[i+1]] ]
 | 
						|
                            self.flow_list += [ flows[i] ]
 | 
						|
                        elif direction == 'into_past':
 | 
						|
                            self.image_list += [ [images[i+1], images[i]] ]
 | 
						|
                            self.flow_list += [ flows[i+1] ]
 | 
						|
      
 | 
						|
 | 
						|
class KITTI(FlowDataset):
 | 
						|
    def __init__(self, aug_params=None, split='training', root='datasets/KITTI'):
 | 
						|
        super(KITTI, self).__init__(aug_params, sparse=True)
 | 
						|
        if split == 'testing':
 | 
						|
            self.is_test = True
 | 
						|
 | 
						|
        root = osp.join(root, split)
 | 
						|
        images1 = sorted(glob(osp.join(root, 'image_2/*_10.png')))
 | 
						|
        images2 = sorted(glob(osp.join(root, 'image_2/*_11.png')))
 | 
						|
 | 
						|
        for img1, img2 in zip(images1, images2):
 | 
						|
            frame_id = img1.split('/')[-1]
 | 
						|
            self.extra_info += [ [frame_id] ]
 | 
						|
            self.image_list += [ [img1, img2] ]
 | 
						|
 | 
						|
        if split == 'training':
 | 
						|
            self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png')))
 | 
						|
 | 
						|
 | 
						|
class HD1K(FlowDataset):
 | 
						|
    def __init__(self, aug_params=None, root='datasets/HD1k'):
 | 
						|
        super(HD1K, self).__init__(aug_params, sparse=True)
 | 
						|
 | 
						|
        seq_ix = 0
 | 
						|
        while 1:
 | 
						|
            flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix)))
 | 
						|
            images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix)))
 | 
						|
 | 
						|
            if len(flows) == 0:
 | 
						|
                break
 | 
						|
 | 
						|
            for i in range(len(flows)-1):
 | 
						|
                self.flow_list += [flows[i]]
 | 
						|
                self.image_list += [ [images[i], images[i+1]] ]
 | 
						|
 | 
						|
            seq_ix += 1
 | 
						|
 | 
						|
 | 
						|
def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'):
 | 
						|
    """ Create the data loader for the corresponding trainign set """
 | 
						|
 | 
						|
    if args.stage == 'chairs':
 | 
						|
        aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True}
 | 
						|
        train_dataset = FlyingChairs(aug_params, split='training')
 | 
						|
    
 | 
						|
    elif args.stage == 'things':
 | 
						|
        aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True}
 | 
						|
        clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass')
 | 
						|
        final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass')
 | 
						|
        train_dataset = clean_dataset + final_dataset
 | 
						|
 | 
						|
    elif args.stage == 'sintel':
 | 
						|
        aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True}
 | 
						|
        things = FlyingThings3D(aug_params, dstype='frames_cleanpass')
 | 
						|
        sintel_clean = MpiSintel(aug_params, split='training', dstype='clean')
 | 
						|
        sintel_final = MpiSintel(aug_params, split='training', dstype='final')        
 | 
						|
 | 
						|
        if TRAIN_DS == 'C+T+K+S+H':
 | 
						|
            kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True})
 | 
						|
            hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True})
 | 
						|
            train_dataset = 100*sintel_clean + 100*sintel_final + 200*kitti + 5*hd1k + things
 | 
						|
 | 
						|
        elif TRAIN_DS == 'C+T+K/S':
 | 
						|
            train_dataset = 100*sintel_clean + 100*sintel_final + things
 | 
						|
 | 
						|
    elif args.stage == 'kitti':
 | 
						|
        aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False}
 | 
						|
        train_dataset = KITTI(aug_params, split='training')
 | 
						|
 | 
						|
    train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, 
 | 
						|
        pin_memory=False, shuffle=True, num_workers=4, drop_last=True)
 | 
						|
 | 
						|
    print('Training with %d image pairs' % len(train_dataset))
 | 
						|
    return train_loader
 | 
						|
 |