mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			145 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			145 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import torch
 | 
						|
import torch.nn as nn
 | 
						|
import torch.nn.functional as F
 | 
						|
 | 
						|
from .update import BasicUpdateBlock, SmallUpdateBlock
 | 
						|
from .extractor import BasicEncoder, SmallEncoder
 | 
						|
from .corr import CorrBlock, AlternateCorrBlock
 | 
						|
from .utils.utils import bilinear_sampler, coords_grid, upflow8
 | 
						|
 | 
						|
try:
 | 
						|
    autocast = torch.amp.autocast
 | 
						|
except:
 | 
						|
    # dummy autocast for PyTorch < 1.6
 | 
						|
    class autocast:
 | 
						|
        def __init__(self, enabled):
 | 
						|
            pass
 | 
						|
        def __enter__(self):
 | 
						|
            pass
 | 
						|
        def __exit__(self, *args):
 | 
						|
            pass
 | 
						|
 | 
						|
 | 
						|
class RAFT(nn.Module):
 | 
						|
    def __init__(self, args):
 | 
						|
        super(RAFT, self).__init__()
 | 
						|
        self.args = args
 | 
						|
 | 
						|
        if args.small:
 | 
						|
            self.hidden_dim = hdim = 96
 | 
						|
            self.context_dim = cdim = 64
 | 
						|
            args.corr_levels = 4
 | 
						|
            args.corr_radius = 3
 | 
						|
        
 | 
						|
        else:
 | 
						|
            self.hidden_dim = hdim = 128
 | 
						|
            self.context_dim = cdim = 128
 | 
						|
            args.corr_levels = 4
 | 
						|
            args.corr_radius = 4
 | 
						|
 | 
						|
        if 'dropout' not in self.args:
 | 
						|
            self.args.dropout = 0
 | 
						|
 | 
						|
        if 'alternate_corr' not in self.args:
 | 
						|
            self.args.alternate_corr = False
 | 
						|
 | 
						|
        # feature network, context network, and update block
 | 
						|
        if args.small:
 | 
						|
            self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout)        
 | 
						|
            self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout)
 | 
						|
            self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim)
 | 
						|
 | 
						|
        else:
 | 
						|
            self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout)        
 | 
						|
            self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout)
 | 
						|
            self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)
 | 
						|
 | 
						|
    def freeze_bn(self):
 | 
						|
        for m in self.modules():
 | 
						|
            if isinstance(m, nn.BatchNorm2d):
 | 
						|
                m.eval()
 | 
						|
 | 
						|
    def initialize_flow(self, img):
 | 
						|
        """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
 | 
						|
        N, C, H, W = img.shape
 | 
						|
        coords0 = coords_grid(N, H//8, W//8).to(img.device)
 | 
						|
        coords1 = coords_grid(N, H//8, W//8).to(img.device)
 | 
						|
 | 
						|
        # optical flow computed as difference: flow = coords1 - coords0
 | 
						|
        return coords0, coords1
 | 
						|
 | 
						|
    def upsample_flow(self, flow, mask):
 | 
						|
        """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
 | 
						|
        N, _, H, W = flow.shape
 | 
						|
        mask = mask.view(N, 1, 9, 8, 8, H, W)
 | 
						|
        mask = torch.softmax(mask, dim=2)
 | 
						|
 | 
						|
        up_flow = F.unfold(8 * flow, [3,3], padding=1)
 | 
						|
        up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)
 | 
						|
 | 
						|
        up_flow = torch.sum(mask * up_flow, dim=2)
 | 
						|
        up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
 | 
						|
        return up_flow.reshape(N, 2, 8*H, 8*W)
 | 
						|
 | 
						|
 | 
						|
    def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False):
 | 
						|
        """ Estimate optical flow between pair of frames """
 | 
						|
 | 
						|
        image1 = 2 * (image1 / 255.0) - 1.0
 | 
						|
        image2 = 2 * (image2 / 255.0) - 1.0
 | 
						|
 | 
						|
        image1 = image1.contiguous()
 | 
						|
        image2 = image2.contiguous()
 | 
						|
 | 
						|
        hdim = self.hidden_dim
 | 
						|
        cdim = self.context_dim
 | 
						|
 | 
						|
        # run the feature network
 | 
						|
        with autocast('cuda', enabled=self.args.mixed_precision):
 | 
						|
            fmap1, fmap2 = self.fnet([image1, image2])        
 | 
						|
        
 | 
						|
        fmap1 = fmap1.float()
 | 
						|
        fmap2 = fmap2.float()
 | 
						|
        if self.args.alternate_corr:
 | 
						|
            corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
 | 
						|
        else:
 | 
						|
            corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
 | 
						|
 | 
						|
        # run the context network
 | 
						|
        with autocast('cuda', enabled=self.args.mixed_precision):
 | 
						|
            cnet = self.cnet(image1)
 | 
						|
            net, inp = torch.split(cnet, [hdim, cdim], dim=1)
 | 
						|
            net = torch.tanh(net)
 | 
						|
            inp = torch.relu(inp)
 | 
						|
 | 
						|
        coords0, coords1 = self.initialize_flow(image1)
 | 
						|
 | 
						|
        if flow_init is not None:
 | 
						|
            coords1 = coords1 + flow_init
 | 
						|
 | 
						|
        flow_predictions = []
 | 
						|
        for itr in range(iters):
 | 
						|
            coords1 = coords1.detach()
 | 
						|
            corr = corr_fn(coords1) # index correlation volume
 | 
						|
 | 
						|
            flow = coords1 - coords0
 | 
						|
            with autocast('cuda', enabled=self.args.mixed_precision):
 | 
						|
                net, up_mask, delta_flow = self.update_block(net, inp, corr, flow)
 | 
						|
 | 
						|
            # F(t+1) = F(t) + \Delta(t)
 | 
						|
            coords1 = coords1 + delta_flow
 | 
						|
 | 
						|
            # upsample predictions
 | 
						|
            if up_mask is None:
 | 
						|
                flow_up = upflow8(coords1 - coords0)
 | 
						|
            else:
 | 
						|
                flow_up = self.upsample_flow(coords1 - coords0, up_mask)
 | 
						|
            
 | 
						|
            flow_predictions.append(flow_up)
 | 
						|
 | 
						|
        if test_mode:
 | 
						|
            return coords1 - coords0, flow_up
 | 
						|
            
 | 
						|
        return flow_predictions
 |