mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			140 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
import torch.nn as nn
 | 
						|
import torch.nn.functional as F
 | 
						|
 | 
						|
 | 
						|
class FlowHead(nn.Module):
 | 
						|
    def __init__(self, input_dim=128, hidden_dim=256):
 | 
						|
        super(FlowHead, self).__init__()
 | 
						|
        self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
 | 
						|
        self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1)
 | 
						|
        self.relu = nn.ReLU(inplace=True)
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        return self.conv2(self.relu(self.conv1(x)))
 | 
						|
 | 
						|
class ConvGRU(nn.Module):
 | 
						|
    def __init__(self, hidden_dim=128, input_dim=192+128):
 | 
						|
        super(ConvGRU, self).__init__()
 | 
						|
        self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
 | 
						|
        self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
 | 
						|
        self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
 | 
						|
 | 
						|
    def forward(self, h, x):
 | 
						|
        hx = torch.cat([h, x], dim=1)
 | 
						|
 | 
						|
        z = torch.sigmoid(self.convz(hx))
 | 
						|
        r = torch.sigmoid(self.convr(hx))
 | 
						|
        q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))
 | 
						|
 | 
						|
        h = (1-z) * h + z * q
 | 
						|
        return h
 | 
						|
 | 
						|
class SepConvGRU(nn.Module):
 | 
						|
    def __init__(self, hidden_dim=128, input_dim=192+128):
 | 
						|
        super(SepConvGRU, self).__init__()
 | 
						|
        self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
 | 
						|
        self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
 | 
						|
        self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
 | 
						|
 | 
						|
        self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
 | 
						|
        self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
 | 
						|
        self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
 | 
						|
 | 
						|
 | 
						|
    def forward(self, h, x):
 | 
						|
        # horizontal
 | 
						|
        hx = torch.cat([h, x], dim=1)
 | 
						|
        z = torch.sigmoid(self.convz1(hx))
 | 
						|
        r = torch.sigmoid(self.convr1(hx))
 | 
						|
        q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))        
 | 
						|
        h = (1-z) * h + z * q
 | 
						|
 | 
						|
        # vertical
 | 
						|
        hx = torch.cat([h, x], dim=1)
 | 
						|
        z = torch.sigmoid(self.convz2(hx))
 | 
						|
        r = torch.sigmoid(self.convr2(hx))
 | 
						|
        q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))       
 | 
						|
        h = (1-z) * h + z * q
 | 
						|
 | 
						|
        return h
 | 
						|
 | 
						|
class SmallMotionEncoder(nn.Module):
 | 
						|
    def __init__(self, args):
 | 
						|
        super(SmallMotionEncoder, self).__init__()
 | 
						|
        cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
 | 
						|
        self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0)
 | 
						|
        self.convf1 = nn.Conv2d(2, 64, 7, padding=3)
 | 
						|
        self.convf2 = nn.Conv2d(64, 32, 3, padding=1)
 | 
						|
        self.conv = nn.Conv2d(128, 80, 3, padding=1)
 | 
						|
 | 
						|
    def forward(self, flow, corr):
 | 
						|
        cor = F.relu(self.convc1(corr))
 | 
						|
        flo = F.relu(self.convf1(flow))
 | 
						|
        flo = F.relu(self.convf2(flo))
 | 
						|
        cor_flo = torch.cat([cor, flo], dim=1)
 | 
						|
        out = F.relu(self.conv(cor_flo))
 | 
						|
        return torch.cat([out, flow], dim=1)
 | 
						|
 | 
						|
class BasicMotionEncoder(nn.Module):
 | 
						|
    def __init__(self, args):
 | 
						|
        super(BasicMotionEncoder, self).__init__()
 | 
						|
        cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
 | 
						|
        self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0)
 | 
						|
        self.convc2 = nn.Conv2d(256, 192, 3, padding=1)
 | 
						|
        self.convf1 = nn.Conv2d(2, 128, 7, padding=3)
 | 
						|
        self.convf2 = nn.Conv2d(128, 64, 3, padding=1)
 | 
						|
        self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1)
 | 
						|
 | 
						|
    def forward(self, flow, corr):
 | 
						|
        cor = F.relu(self.convc1(corr))
 | 
						|
        cor = F.relu(self.convc2(cor))
 | 
						|
        flo = F.relu(self.convf1(flow))
 | 
						|
        flo = F.relu(self.convf2(flo))
 | 
						|
 | 
						|
        cor_flo = torch.cat([cor, flo], dim=1)
 | 
						|
        out = F.relu(self.conv(cor_flo))
 | 
						|
        return torch.cat([out, flow], dim=1)
 | 
						|
 | 
						|
class SmallUpdateBlock(nn.Module):
 | 
						|
    def __init__(self, args, hidden_dim=96):
 | 
						|
        super(SmallUpdateBlock, self).__init__()
 | 
						|
        self.encoder = SmallMotionEncoder(args)
 | 
						|
        self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64)
 | 
						|
        self.flow_head = FlowHead(hidden_dim, hidden_dim=128)
 | 
						|
 | 
						|
    def forward(self, net, inp, corr, flow):
 | 
						|
        motion_features = self.encoder(flow, corr)
 | 
						|
        inp = torch.cat([inp, motion_features], dim=1)
 | 
						|
        net = self.gru(net, inp)
 | 
						|
        delta_flow = self.flow_head(net)
 | 
						|
 | 
						|
        return net, None, delta_flow
 | 
						|
 | 
						|
class BasicUpdateBlock(nn.Module):
 | 
						|
    def __init__(self, args, hidden_dim=128, input_dim=128):
 | 
						|
        super(BasicUpdateBlock, self).__init__()
 | 
						|
        self.args = args
 | 
						|
        self.encoder = BasicMotionEncoder(args)
 | 
						|
        self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim)
 | 
						|
        self.flow_head = FlowHead(hidden_dim, hidden_dim=256)
 | 
						|
 | 
						|
        self.mask = nn.Sequential(
 | 
						|
            nn.Conv2d(128, 256, 3, padding=1),
 | 
						|
            nn.ReLU(inplace=True),
 | 
						|
            nn.Conv2d(256, 64*9, 1, padding=0))
 | 
						|
 | 
						|
    def forward(self, net, inp, corr, flow, upsample=True):
 | 
						|
        motion_features = self.encoder(flow, corr)
 | 
						|
        inp = torch.cat([inp, motion_features], dim=1)
 | 
						|
 | 
						|
        net = self.gru(net, inp)
 | 
						|
        delta_flow = self.flow_head(net)
 | 
						|
 | 
						|
        # scale mask to balence gradients
 | 
						|
        mask = .25 * self.mask(net)
 | 
						|
        return net, mask, delta_flow
 | 
						|
 | 
						|
 | 
						|
 |