mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			132 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			132 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization
 | 
						|
 | 
						|
 | 
						|
# MIT License
 | 
						|
#
 | 
						|
# Copyright (c) 2018 Tom Runia
 | 
						|
#
 | 
						|
# Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
# of this software and associated documentation files (the "Software"), to deal
 | 
						|
# in the Software without restriction, including without limitation the rights
 | 
						|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
# copies of the Software, and to permit persons to whom the Software is
 | 
						|
# furnished to do so, subject to conditions.
 | 
						|
#
 | 
						|
# Author: Tom Runia
 | 
						|
# Date Created: 2018-08-03
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
def make_colorwheel():
 | 
						|
    """
 | 
						|
    Generates a color wheel for optical flow visualization as presented in:
 | 
						|
        Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
 | 
						|
        URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
 | 
						|
 | 
						|
    Code follows the original C++ source code of Daniel Scharstein.
 | 
						|
    Code follows the the Matlab source code of Deqing Sun.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        np.ndarray: Color wheel
 | 
						|
    """
 | 
						|
 | 
						|
    RY = 15
 | 
						|
    YG = 6
 | 
						|
    GC = 4
 | 
						|
    CB = 11
 | 
						|
    BM = 13
 | 
						|
    MR = 6
 | 
						|
 | 
						|
    ncols = RY + YG + GC + CB + BM + MR
 | 
						|
    colorwheel = np.zeros((ncols, 3))
 | 
						|
    col = 0
 | 
						|
 | 
						|
    # RY
 | 
						|
    colorwheel[0:RY, 0] = 255
 | 
						|
    colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
 | 
						|
    col = col+RY
 | 
						|
    # YG
 | 
						|
    colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
 | 
						|
    colorwheel[col:col+YG, 1] = 255
 | 
						|
    col = col+YG
 | 
						|
    # GC
 | 
						|
    colorwheel[col:col+GC, 1] = 255
 | 
						|
    colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
 | 
						|
    col = col+GC
 | 
						|
    # CB
 | 
						|
    colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
 | 
						|
    colorwheel[col:col+CB, 2] = 255
 | 
						|
    col = col+CB
 | 
						|
    # BM
 | 
						|
    colorwheel[col:col+BM, 2] = 255
 | 
						|
    colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
 | 
						|
    col = col+BM
 | 
						|
    # MR
 | 
						|
    colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
 | 
						|
    colorwheel[col:col+MR, 0] = 255
 | 
						|
    return colorwheel
 | 
						|
 | 
						|
 | 
						|
def flow_uv_to_colors(u, v, convert_to_bgr=False):
 | 
						|
    """
 | 
						|
    Applies the flow color wheel to (possibly clipped) flow components u and v.
 | 
						|
 | 
						|
    According to the C++ source code of Daniel Scharstein
 | 
						|
    According to the Matlab source code of Deqing Sun
 | 
						|
 | 
						|
    Args:
 | 
						|
        u (np.ndarray): Input horizontal flow of shape [H,W]
 | 
						|
        v (np.ndarray): Input vertical flow of shape [H,W]
 | 
						|
        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        np.ndarray: Flow visualization image of shape [H,W,3]
 | 
						|
    """
 | 
						|
    flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
 | 
						|
    colorwheel = make_colorwheel()  # shape [55x3]
 | 
						|
    ncols = colorwheel.shape[0]
 | 
						|
    rad = np.sqrt(np.square(u) + np.square(v))
 | 
						|
    a = np.arctan2(-v, -u)/np.pi
 | 
						|
    fk = (a+1) / 2*(ncols-1)
 | 
						|
    k0 = np.floor(fk).astype(np.int32)
 | 
						|
    k1 = k0 + 1
 | 
						|
    k1[k1 == ncols] = 0
 | 
						|
    f = fk - k0
 | 
						|
    for i in range(colorwheel.shape[1]):
 | 
						|
        tmp = colorwheel[:,i]
 | 
						|
        col0 = tmp[k0] / 255.0
 | 
						|
        col1 = tmp[k1] / 255.0
 | 
						|
        col = (1-f)*col0 + f*col1
 | 
						|
        idx = (rad <= 1)
 | 
						|
        col[idx]  = 1 - rad[idx] * (1-col[idx])
 | 
						|
        col[~idx] = col[~idx] * 0.75   # out of range
 | 
						|
        # Note the 2-i => BGR instead of RGB
 | 
						|
        ch_idx = 2-i if convert_to_bgr else i
 | 
						|
        flow_image[:,:,ch_idx] = np.floor(255 * col)
 | 
						|
    return flow_image
 | 
						|
 | 
						|
 | 
						|
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
 | 
						|
    """
 | 
						|
    Expects a two dimensional flow image of shape.
 | 
						|
 | 
						|
    Args:
 | 
						|
        flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
 | 
						|
        clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
 | 
						|
        convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        np.ndarray: Flow visualization image of shape [H,W,3]
 | 
						|
    """
 | 
						|
    assert flow_uv.ndim == 3, 'input flow must have three dimensions'
 | 
						|
    assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
 | 
						|
    if clip_flow is not None:
 | 
						|
        flow_uv = np.clip(flow_uv, 0, clip_flow)
 | 
						|
    u = flow_uv[:,:,0]
 | 
						|
    v = flow_uv[:,:,1]
 | 
						|
    rad = np.sqrt(np.square(u) + np.square(v))
 | 
						|
    rad_max = np.max(rad)
 | 
						|
    epsilon = 1e-5
 | 
						|
    u = u / (rad_max + epsilon)
 | 
						|
    v = v / (rad_max + epsilon)
 | 
						|
    return flow_uv_to_colors(u, v, convert_to_bgr) |