mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			83 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
import torch.nn.functional as F
 | 
						|
import numpy as np
 | 
						|
from scipy import interpolate
 | 
						|
 | 
						|
 | 
						|
class InputPadder:
 | 
						|
    """ Pads images such that dimensions are divisible by 8 """
 | 
						|
    def __init__(self, dims, mode='sintel'):
 | 
						|
        self.ht, self.wd = dims[-2:]
 | 
						|
        pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8
 | 
						|
        pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8
 | 
						|
        if mode == 'sintel':
 | 
						|
            self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2]
 | 
						|
        else:
 | 
						|
            self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht]
 | 
						|
 | 
						|
    def pad(self, *inputs):
 | 
						|
        return [F.pad(x, self._pad, mode='replicate') for x in inputs]
 | 
						|
 | 
						|
    def unpad(self,x):
 | 
						|
        ht, wd = x.shape[-2:]
 | 
						|
        c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]]
 | 
						|
        return x[..., c[0]:c[1], c[2]:c[3]]
 | 
						|
 | 
						|
def forward_interpolate(flow):
 | 
						|
    flow = flow.detach().cpu().numpy()
 | 
						|
    dx, dy = flow[0], flow[1]
 | 
						|
 | 
						|
    ht, wd = dx.shape
 | 
						|
    x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht), indexing='ij')
 | 
						|
 | 
						|
    x1 = x0 + dx
 | 
						|
    y1 = y0 + dy
 | 
						|
    
 | 
						|
    x1 = x1.reshape(-1)
 | 
						|
    y1 = y1.reshape(-1)
 | 
						|
    dx = dx.reshape(-1)
 | 
						|
    dy = dy.reshape(-1)
 | 
						|
 | 
						|
    valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht)
 | 
						|
    x1 = x1[valid]
 | 
						|
    y1 = y1[valid]
 | 
						|
    dx = dx[valid]
 | 
						|
    dy = dy[valid]
 | 
						|
 | 
						|
    flow_x = interpolate.griddata(
 | 
						|
        (x1, y1), dx, (x0, y0), method='nearest', fill_value=0)
 | 
						|
 | 
						|
    flow_y = interpolate.griddata(
 | 
						|
        (x1, y1), dy, (x0, y0), method='nearest', fill_value=0)
 | 
						|
 | 
						|
    flow = np.stack([flow_x, flow_y], axis=0)
 | 
						|
    return torch.from_numpy(flow).float()
 | 
						|
 | 
						|
 | 
						|
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
 | 
						|
    """ Wrapper for grid_sample, uses pixel coordinates """
 | 
						|
    H, W = img.shape[-2:]
 | 
						|
    xgrid, ygrid = coords.split([1,1], dim=-1)
 | 
						|
    xgrid = 2*xgrid/(W-1) - 1
 | 
						|
    ygrid = 2*ygrid/(H-1) - 1
 | 
						|
 | 
						|
    grid = torch.cat([xgrid, ygrid], dim=-1)
 | 
						|
    img = F.grid_sample(img, grid, align_corners=True)
 | 
						|
 | 
						|
    if mask:
 | 
						|
        mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
 | 
						|
        return img, mask.float()
 | 
						|
 | 
						|
    return img
 | 
						|
 | 
						|
 | 
						|
def coords_grid(batch, ht, wd):
 | 
						|
    coords = torch.meshgrid(torch.arange(ht), torch.arange(wd), indexing='ij')
 | 
						|
    coords = torch.stack(coords[::-1], dim=0).float()
 | 
						|
    return coords[None].repeat(batch, 1, 1, 1)
 | 
						|
 | 
						|
 | 
						|
def upflow8(flow, mode='bilinear'):
 | 
						|
    new_size = (8 * flow.shape[2], 8 * flow.shape[3])
 | 
						|
    return  8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
 |