Wan2.1/wan/modules/attention.py
2025-07-12 18:00:40 +02:00

236 lines
6.9 KiB
Python

# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
import math
try:
import flash_attn_interface
FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_3_AVAILABLE = False
try:
import flash_attn
FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_2_AVAILABLE = False
import warnings
__all__ = [
'flash_attention',
'attention',
]
DEBUG_ATTENTION = True
def log_debug(message):
if DEBUG_ATTENTION:
print(f"[DEBUG] {message}")
def manual_attention(
q,
k,
v,
q_lens=None,
k_lens=None,
dropout_p=0.,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
):
"""Attention manuelle optimisée pour tous les devices"""
# Déplacement immédiat sur le bon device
device = q.device
k = k.to(device)
v = v.to(device)
if q_lens is not None: q_lens = q_lens.to(device)
if k_lens is not None: k_lens = k_lens.to(device)
B, Lq, N, C = q.shape
_, Lk, _, _ = k.shape
original_dtype = q.dtype
# Conversion au dtype de calcul
q = q.to(dtype).transpose(1, 2)
k = k.to(dtype).transpose(1, 2)
v = v.to(dtype).transpose(1, 2)
# Scaling
scale_factor = softmax_scale or (1.0 / math.sqrt(C))
if q_scale is not None:
q = q * q_scale.view(1, -1, 1, 1)
# Calcul des scores d'attention
attn_scores = torch.matmul(q, k.transpose(-2, -1)) * scale_factor
# Création des masques
attn_mask = torch.zeros(B, 1, Lq, Lk, device=device, dtype=torch.float32)
# Masque de padding des clés
if k_lens is not None:
key_mask = torch.arange(Lk, device=device)[None, :] < k_lens[:, None]
attn_mask = attn_mask.masked_fill(~key_mask.view(B, 1, 1, Lk), float('-inf'))
# Masque causal
if causal:
causal_mask = torch.ones(Lq, Lk, device=device, dtype=torch.bool).tril()
attn_mask = attn_mask.masked_fill(~causal_mask, float('-inf'))
# Masque de fenêtre
if window_size != (-1, -1):
left, right = window_size
row = torch.arange(Lq, device=device)[:, None]
col = torch.arange(Lk, device=device)[None, :]
window_mask = (row - col >= -left) & (row - col <= right)
attn_mask = attn_mask.masked_fill(~window_mask, float('-inf'))
# Application du masque
attn_scores += attn_mask
# Softmax et dropout
attn_weights = torch.softmax(attn_scores, dim=-1)
if not deterministic and dropout_p > 0:
attn_weights = torch.dropout(attn_weights, dropout_p, True)
# Calcul de la sortie
out = torch.matmul(attn_weights, v)
# Masque de padding des requêtes
if q_lens is not None:
query_mask = torch.arange(Lq, device=device)[None, :] < q_lens[:, None]
out = out * query_mask.view(B, 1, Lq, 1).to(out.dtype)
# Retour au format original
return out.transpose(1, 2).contiguous().to(original_dtype)
def flash_attention(
q,
k,
v,
q_lens=None,
k_lens=None,
dropout_p=0.,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
version=None,
):
"""Wrapper pour FlashAttention avec fallback manuel"""
# Fallback si FlashAttention non disponible
if not (FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE):
return manual_attention(
q, k, v, q_lens, k_lens, dropout_p, softmax_scale,
q_scale, causal, window_size, deterministic, dtype
)
# Paramètres GPU
device = q.device
b, lq, lk = q.size(0), q.size(1), k.size(1)
out_dtype = q.dtype
# Préparation des séquences
if q_lens is None:
q_lens = torch.full((b,), lq, dtype=torch.int32, device=device)
q_flat = q.flatten(0, 1)
else:
q_lens = q_lens.to(device)
q_flat = torch.cat([u[:l] for u, l in zip(q, q_lens)])
if k_lens is None:
k_lens = torch.full((b,), lk, dtype=torch.int32, device=device)
k_flat = k.flatten(0, 1)
v_flat = v.flatten(0, 1)
else:
k_lens = k_lens.to(device)
k_flat = torch.cat([u[:l] for u, l in zip(k, k_lens)])
v_flat = torch.cat([u[:l] for u, l in zip(v, k_lens)])
# Conversion de type
q_flat = q_flat.to(dtype)
k_flat = k_flat.to(dtype)
v_flat = v_flat.to(dtype)
# Application de q_scale
if q_scale is not None:
q_flat = q_flat * q_scale
# Préparation des séquences cumulatives
cu_seqlens_q = torch.cat([torch.tensor([0], device=device), q_lens.cumsum(0)])
cu_seqlens_k = torch.cat([torch.tensor([0], device=device), k_lens.cumsum(0)])
# Appel à FlashAttention
try:
if FLASH_ATTN_3_AVAILABLE and (version is None or version == 3):
x = flash_attn_interface.flash_attn_varlen_func(
q_flat, k_flat, v_flat,
cu_seqlens_q, cu_seqlens_k,
max_seqlen_q=lq, max_seqlen_k=lk,
softmax_scale=softmax_scale,
causal=causal,
deterministic=deterministic
)[0]
else:
x = flash_attn.flash_attn_varlen_func(
q_flat, k_flat, v_flat,
cu_seqlens_q, cu_seqlens_k,
max_seqlen_q=lq, max_seqlen_k=lk,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic
)
return x.unflatten(0, (b, lq)).to(out_dtype)
except Exception as e:
warnings.warn(f"FlashAttention failed: {e}, using manual attention")
return manual_attention(
q, k, v, q_lens, k_lens, dropout_p, softmax_scale,
q_scale, causal, window_size, deterministic, dtype
)
def attention(
q,
k,
v,
q_lens=None,
k_lens=None,
dropout_p=0.,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
fa_version=None,
):
"""Fonction d'attention unifiée"""
# Synchronisation des devices
device = q.device
k = k.to(device)
v = v.to(device)
if q_lens is not None: q_lens = q_lens.to(device)
if k_lens is not None: k_lens = k_lens.to(device)
# Sélection de l'implémentation
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
return flash_attention(
q, k, v, q_lens, k_lens, dropout_p, softmax_scale,
q_scale, causal, window_size, deterministic, dtype, fa_version
)
else:
return manual_attention(
q, k, v, q_lens, k_lens, dropout_p, softmax_scale,
q_scale, causal, window_size, deterministic, dtype
)