mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			422 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# ADAPTED from https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
 | 
						|
from .custom_stft import CustomSTFT
 | 
						|
from torch.nn.utils import weight_norm
 | 
						|
import math
 | 
						|
import torch
 | 
						|
import torch.nn as nn
 | 
						|
import torch.nn.functional as F
 | 
						|
 | 
						|
 | 
						|
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
 | 
						|
def init_weights(m, mean=0.0, std=0.01):
 | 
						|
    classname = m.__class__.__name__
 | 
						|
    if classname.find("Conv") != -1:
 | 
						|
        m.weight.data.normal_(mean, std)
 | 
						|
 | 
						|
def get_padding(kernel_size, dilation=1):
 | 
						|
    return int((kernel_size*dilation - dilation)/2)
 | 
						|
 | 
						|
 | 
						|
class AdaIN1d(nn.Module):
 | 
						|
    def __init__(self, style_dim, num_features):
 | 
						|
        super().__init__()
 | 
						|
        # affine should be False, however there's a bug in the old torch.onnx.export (not newer dynamo) that causes the channel dimension to be lost if affine=False. When affine is true, there's additional learnably parameters. This shouldn't really matter setting it to True, since we're in inference mode
 | 
						|
        self.norm = nn.InstanceNorm1d(num_features, affine=True)
 | 
						|
        self.fc = nn.Linear(style_dim, num_features*2)
 | 
						|
 | 
						|
    def forward(self, x, s):
 | 
						|
        h = self.fc(s)
 | 
						|
        h = h.view(h.size(0), h.size(1), 1)
 | 
						|
        gamma, beta = torch.chunk(h, chunks=2, dim=1)
 | 
						|
        return (1 + gamma) * self.norm(x) + beta
 | 
						|
 | 
						|
 | 
						|
class AdaINResBlock1(nn.Module):
 | 
						|
    def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
 | 
						|
        super(AdaINResBlock1, self).__init__()
 | 
						|
        self.convs1 = nn.ModuleList([
 | 
						|
            weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
 | 
						|
                                  padding=get_padding(kernel_size, dilation[0]))),
 | 
						|
            weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
 | 
						|
                                  padding=get_padding(kernel_size, dilation[1]))),
 | 
						|
            weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
 | 
						|
                                  padding=get_padding(kernel_size, dilation[2])))
 | 
						|
        ])
 | 
						|
        self.convs1.apply(init_weights)
 | 
						|
        self.convs2 = nn.ModuleList([
 | 
						|
            weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1,
 | 
						|
                                  padding=get_padding(kernel_size, 1))),
 | 
						|
            weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1,
 | 
						|
                                  padding=get_padding(kernel_size, 1))),
 | 
						|
            weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1,
 | 
						|
                                  padding=get_padding(kernel_size, 1)))
 | 
						|
        ])
 | 
						|
        self.convs2.apply(init_weights)
 | 
						|
        self.adain1 = nn.ModuleList([
 | 
						|
            AdaIN1d(style_dim, channels),
 | 
						|
            AdaIN1d(style_dim, channels),
 | 
						|
            AdaIN1d(style_dim, channels),
 | 
						|
        ])
 | 
						|
        self.adain2 = nn.ModuleList([
 | 
						|
            AdaIN1d(style_dim, channels),
 | 
						|
            AdaIN1d(style_dim, channels),
 | 
						|
            AdaIN1d(style_dim, channels),
 | 
						|
        ])
 | 
						|
        self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
 | 
						|
        self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
 | 
						|
 | 
						|
    def forward(self, x, s):
 | 
						|
        for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
 | 
						|
            xt = n1(x, s)
 | 
						|
            xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2)  # Snake1D
 | 
						|
            xt = c1(xt)
 | 
						|
            xt = n2(xt, s)
 | 
						|
            xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2)  # Snake1D
 | 
						|
            xt = c2(xt)
 | 
						|
            x = xt + x
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class TorchSTFT(nn.Module):
 | 
						|
    def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
 | 
						|
        super().__init__()
 | 
						|
        self.filter_length = filter_length
 | 
						|
        self.hop_length = hop_length
 | 
						|
        self.win_length = win_length
 | 
						|
        assert window == 'hann', window
 | 
						|
        self.window = torch.hann_window(win_length, periodic=True, dtype=torch.float32)
 | 
						|
 | 
						|
    def transform(self, input_data):
 | 
						|
        forward_transform = torch.stft(
 | 
						|
            input_data,
 | 
						|
            self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
 | 
						|
            return_complex=True)
 | 
						|
        return torch.abs(forward_transform), torch.angle(forward_transform)
 | 
						|
 | 
						|
    def inverse(self, magnitude, phase):
 | 
						|
        inverse_transform = torch.istft(
 | 
						|
            magnitude * torch.exp(phase * 1j),
 | 
						|
            self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
 | 
						|
        return inverse_transform.unsqueeze(-2)  # unsqueeze to stay consistent with conv_transpose1d implementation
 | 
						|
 | 
						|
    def forward(self, input_data):
 | 
						|
        self.magnitude, self.phase = self.transform(input_data)
 | 
						|
        reconstruction = self.inverse(self.magnitude, self.phase)
 | 
						|
        return reconstruction
 | 
						|
 | 
						|
 | 
						|
class SineGen(nn.Module):
 | 
						|
    """ Definition of sine generator
 | 
						|
    SineGen(samp_rate, harmonic_num = 0,
 | 
						|
            sine_amp = 0.1, noise_std = 0.003,
 | 
						|
            voiced_threshold = 0,
 | 
						|
            flag_for_pulse=False)
 | 
						|
    samp_rate: sampling rate in Hz
 | 
						|
    harmonic_num: number of harmonic overtones (default 0)
 | 
						|
    sine_amp: amplitude of sine-wavefrom (default 0.1)
 | 
						|
    noise_std: std of Gaussian noise (default 0.003)
 | 
						|
    voiced_thoreshold: F0 threshold for U/V classification (default 0)
 | 
						|
    flag_for_pulse: this SinGen is used inside PulseGen (default False)
 | 
						|
    Note: when flag_for_pulse is True, the first time step of a voiced
 | 
						|
        segment is always sin(torch.pi) or cos(0)
 | 
						|
    """
 | 
						|
    def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
 | 
						|
                 sine_amp=0.1, noise_std=0.003,
 | 
						|
                 voiced_threshold=0,
 | 
						|
                 flag_for_pulse=False):
 | 
						|
        super(SineGen, self).__init__()
 | 
						|
        self.sine_amp = sine_amp
 | 
						|
        self.noise_std = noise_std
 | 
						|
        self.harmonic_num = harmonic_num
 | 
						|
        self.dim = self.harmonic_num + 1
 | 
						|
        self.sampling_rate = samp_rate
 | 
						|
        self.voiced_threshold = voiced_threshold
 | 
						|
        self.flag_for_pulse = flag_for_pulse
 | 
						|
        self.upsample_scale = upsample_scale
 | 
						|
 | 
						|
    def _f02uv(self, f0):
 | 
						|
        # generate uv signal
 | 
						|
        uv = (f0 > self.voiced_threshold).type(torch.float32)
 | 
						|
        return uv
 | 
						|
 | 
						|
    def _f02sine(self, f0_values):
 | 
						|
        """ f0_values: (batchsize, length, dim)
 | 
						|
            where dim indicates fundamental tone and overtones
 | 
						|
        """
 | 
						|
        # convert to F0 in rad. The interger part n can be ignored
 | 
						|
        # because 2 * torch.pi * n doesn't affect phase
 | 
						|
        rad_values = (f0_values / self.sampling_rate) % 1
 | 
						|
        # initial phase noise (no noise for fundamental component)
 | 
						|
        rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
 | 
						|
        rand_ini[:, 0] = 0
 | 
						|
        rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
 | 
						|
        # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
 | 
						|
        if not self.flag_for_pulse:
 | 
						|
            rad_values = F.interpolate(rad_values.transpose(1, 2), scale_factor=1/self.upsample_scale, mode="linear").transpose(1, 2)
 | 
						|
            phase = torch.cumsum(rad_values, dim=1) * 2 * torch.pi
 | 
						|
            phase = F.interpolate(phase.transpose(1, 2) * self.upsample_scale, scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
 | 
						|
            sines = torch.sin(phase)
 | 
						|
        else:
 | 
						|
            # If necessary, make sure that the first time step of every
 | 
						|
            # voiced segments is sin(pi) or cos(0)
 | 
						|
            # This is used for pulse-train generation
 | 
						|
            # identify the last time step in unvoiced segments
 | 
						|
            uv = self._f02uv(f0_values)
 | 
						|
            uv_1 = torch.roll(uv, shifts=-1, dims=1)
 | 
						|
            uv_1[:, -1, :] = 1
 | 
						|
            u_loc = (uv < 1) * (uv_1 > 0)
 | 
						|
            # get the instantanouse phase
 | 
						|
            tmp_cumsum = torch.cumsum(rad_values, dim=1)
 | 
						|
            # different batch needs to be processed differently
 | 
						|
            for idx in range(f0_values.shape[0]):
 | 
						|
                temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
 | 
						|
                temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
 | 
						|
                # stores the accumulation of i.phase within
 | 
						|
                # each voiced segments
 | 
						|
                tmp_cumsum[idx, :, :] = 0
 | 
						|
                tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
 | 
						|
            # rad_values - tmp_cumsum: remove the accumulation of i.phase
 | 
						|
            # within the previous voiced segment.
 | 
						|
            i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
 | 
						|
            # get the sines
 | 
						|
            sines = torch.cos(i_phase * 2 * torch.pi)
 | 
						|
        return sines
 | 
						|
 | 
						|
    def forward(self, f0):
 | 
						|
        """ sine_tensor, uv = forward(f0)
 | 
						|
        input F0: tensor(batchsize=1, length, dim=1)
 | 
						|
                  f0 for unvoiced steps should be 0
 | 
						|
        output sine_tensor: tensor(batchsize=1, length, dim)
 | 
						|
        output uv: tensor(batchsize=1, length, 1)
 | 
						|
        """
 | 
						|
        f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
 | 
						|
        # fundamental component
 | 
						|
        fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
 | 
						|
        # generate sine waveforms
 | 
						|
        sine_waves = self._f02sine(fn) * self.sine_amp
 | 
						|
        # generate uv signal
 | 
						|
        # uv = torch.ones(f0.shape)
 | 
						|
        # uv = uv * (f0 > self.voiced_threshold)
 | 
						|
        uv = self._f02uv(f0)
 | 
						|
        # noise: for unvoiced should be similar to sine_amp
 | 
						|
        #        std = self.sine_amp/3 -> max value ~ self.sine_amp
 | 
						|
        #        for voiced regions is self.noise_std
 | 
						|
        noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
 | 
						|
        noise = noise_amp * torch.randn_like(sine_waves)
 | 
						|
        # first: set the unvoiced part to 0 by uv
 | 
						|
        # then: additive noise
 | 
						|
        sine_waves = sine_waves * uv + noise
 | 
						|
        return sine_waves, uv, noise
 | 
						|
 | 
						|
 | 
						|
class SourceModuleHnNSF(nn.Module):
 | 
						|
    """ SourceModule for hn-nsf
 | 
						|
    SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
 | 
						|
                 add_noise_std=0.003, voiced_threshod=0)
 | 
						|
    sampling_rate: sampling_rate in Hz
 | 
						|
    harmonic_num: number of harmonic above F0 (default: 0)
 | 
						|
    sine_amp: amplitude of sine source signal (default: 0.1)
 | 
						|
    add_noise_std: std of additive Gaussian noise (default: 0.003)
 | 
						|
        note that amplitude of noise in unvoiced is decided
 | 
						|
        by sine_amp
 | 
						|
    voiced_threshold: threhold to set U/V given F0 (default: 0)
 | 
						|
    Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
 | 
						|
    F0_sampled (batchsize, length, 1)
 | 
						|
    Sine_source (batchsize, length, 1)
 | 
						|
    noise_source (batchsize, length 1)
 | 
						|
    uv (batchsize, length, 1)
 | 
						|
    """
 | 
						|
    def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
 | 
						|
                 add_noise_std=0.003, voiced_threshod=0):
 | 
						|
        super(SourceModuleHnNSF, self).__init__()
 | 
						|
        self.sine_amp = sine_amp
 | 
						|
        self.noise_std = add_noise_std
 | 
						|
        # to produce sine waveforms
 | 
						|
        self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
 | 
						|
                                 sine_amp, add_noise_std, voiced_threshod)
 | 
						|
        # to merge source harmonics into a single excitation
 | 
						|
        self.l_linear = nn.Linear(harmonic_num + 1, 1)
 | 
						|
        self.l_tanh = nn.Tanh()
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        """
 | 
						|
        Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
 | 
						|
        F0_sampled (batchsize, length, 1)
 | 
						|
        Sine_source (batchsize, length, 1)
 | 
						|
        noise_source (batchsize, length 1)
 | 
						|
        """
 | 
						|
        # source for harmonic branch
 | 
						|
        with torch.no_grad():
 | 
						|
            sine_wavs, uv, _ = self.l_sin_gen(x)
 | 
						|
        sine_merge = self.l_tanh(self.l_linear(sine_wavs))
 | 
						|
        # source for noise branch, in the same shape as uv
 | 
						|
        noise = torch.randn_like(uv) * self.sine_amp / 3
 | 
						|
        return sine_merge, noise, uv
 | 
						|
 | 
						|
 | 
						|
class Generator(nn.Module):
 | 
						|
    def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, disable_complex=False):
 | 
						|
        super(Generator, self).__init__()
 | 
						|
        self.num_kernels = len(resblock_kernel_sizes)
 | 
						|
        self.num_upsamples = len(upsample_rates)
 | 
						|
        self.m_source = SourceModuleHnNSF(
 | 
						|
                    sampling_rate=24000,
 | 
						|
                    upsample_scale=math.prod(upsample_rates) * gen_istft_hop_size,
 | 
						|
                    harmonic_num=8, voiced_threshod=10)
 | 
						|
        self.f0_upsamp = nn.Upsample(scale_factor=math.prod(upsample_rates) * gen_istft_hop_size)
 | 
						|
        self.noise_convs = nn.ModuleList()
 | 
						|
        self.noise_res = nn.ModuleList()
 | 
						|
        self.ups = nn.ModuleList()
 | 
						|
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
 | 
						|
            self.ups.append(weight_norm(
 | 
						|
                nn.ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
 | 
						|
                                   k, u, padding=(k-u)//2)))
 | 
						|
        self.resblocks = nn.ModuleList()
 | 
						|
        for i in range(len(self.ups)):
 | 
						|
            ch = upsample_initial_channel//(2**(i+1))
 | 
						|
            for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
 | 
						|
                self.resblocks.append(AdaINResBlock1(ch, k, d, style_dim))
 | 
						|
            c_cur = upsample_initial_channel // (2 ** (i + 1))
 | 
						|
            if i + 1 < len(upsample_rates):
 | 
						|
                stride_f0 = math.prod(upsample_rates[i + 1:])
 | 
						|
                self.noise_convs.append(nn.Conv1d(
 | 
						|
                    gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
 | 
						|
                self.noise_res.append(AdaINResBlock1(c_cur, 7, [1,3,5], style_dim))
 | 
						|
            else:
 | 
						|
                self.noise_convs.append(nn.Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
 | 
						|
                self.noise_res.append(AdaINResBlock1(c_cur, 11, [1,3,5], style_dim))
 | 
						|
        self.post_n_fft = gen_istft_n_fft
 | 
						|
        self.conv_post = weight_norm(nn.Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
 | 
						|
        self.ups.apply(init_weights)
 | 
						|
        self.conv_post.apply(init_weights)
 | 
						|
        self.reflection_pad = nn.ReflectionPad1d((1, 0))
 | 
						|
        self.stft = (
 | 
						|
            CustomSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
 | 
						|
            if disable_complex
 | 
						|
            else TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
 | 
						|
        )
 | 
						|
 | 
						|
    def forward(self, x, s, f0):
 | 
						|
        with torch.no_grad():
 | 
						|
            f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2)  # bs,n,t
 | 
						|
            har_source, noi_source, uv = self.m_source(f0)
 | 
						|
            har_source = har_source.transpose(1, 2).squeeze(1)
 | 
						|
            har_spec, har_phase = self.stft.transform(har_source)
 | 
						|
            har = torch.cat([har_spec, har_phase], dim=1)
 | 
						|
        for i in range(self.num_upsamples):
 | 
						|
            x = F.leaky_relu(x, negative_slope=0.1) 
 | 
						|
            x_source = self.noise_convs[i](har)
 | 
						|
            x_source = self.noise_res[i](x_source, s)
 | 
						|
            x = self.ups[i](x)
 | 
						|
            if i == self.num_upsamples - 1:
 | 
						|
                x = self.reflection_pad(x)
 | 
						|
            x = x + x_source
 | 
						|
            xs = None
 | 
						|
            for j in range(self.num_kernels):
 | 
						|
                if xs is None:
 | 
						|
                    xs = self.resblocks[i*self.num_kernels+j](x, s)
 | 
						|
                else:
 | 
						|
                    xs += self.resblocks[i*self.num_kernels+j](x, s)
 | 
						|
            x = xs / self.num_kernels
 | 
						|
        x = F.leaky_relu(x)
 | 
						|
        x = self.conv_post(x)
 | 
						|
        spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
 | 
						|
        phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
 | 
						|
        return self.stft.inverse(spec, phase)
 | 
						|
 | 
						|
 | 
						|
class UpSample1d(nn.Module):
 | 
						|
    def __init__(self, layer_type):
 | 
						|
        super().__init__()
 | 
						|
        self.layer_type = layer_type
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        if self.layer_type == 'none':
 | 
						|
            return x
 | 
						|
        else:
 | 
						|
            return F.interpolate(x, scale_factor=2, mode='nearest')
 | 
						|
 | 
						|
 | 
						|
class AdainResBlk1d(nn.Module):
 | 
						|
    def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), upsample='none', dropout_p=0.0):
 | 
						|
        super().__init__()
 | 
						|
        self.actv = actv
 | 
						|
        self.upsample_type = upsample
 | 
						|
        self.upsample = UpSample1d(upsample)
 | 
						|
        self.learned_sc = dim_in != dim_out
 | 
						|
        self._build_weights(dim_in, dim_out, style_dim)
 | 
						|
        self.dropout = nn.Dropout(dropout_p)
 | 
						|
        if upsample == 'none':
 | 
						|
            self.pool = nn.Identity()
 | 
						|
        else:
 | 
						|
            self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
 | 
						|
 | 
						|
    def _build_weights(self, dim_in, dim_out, style_dim):
 | 
						|
        self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
 | 
						|
        self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
 | 
						|
        self.norm1 = AdaIN1d(style_dim, dim_in)
 | 
						|
        self.norm2 = AdaIN1d(style_dim, dim_out)
 | 
						|
        if self.learned_sc:
 | 
						|
            self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
 | 
						|
 | 
						|
    def _shortcut(self, x):
 | 
						|
        x = self.upsample(x)
 | 
						|
        if self.learned_sc:
 | 
						|
            x = self.conv1x1(x)
 | 
						|
        return x
 | 
						|
 | 
						|
    def _residual(self, x, s):
 | 
						|
        x = self.norm1(x, s)
 | 
						|
        x = self.actv(x)
 | 
						|
        x = self.pool(x)
 | 
						|
        x = self.conv1(self.dropout(x))
 | 
						|
        x = self.norm2(x, s)
 | 
						|
        x = self.actv(x)
 | 
						|
        x = self.conv2(self.dropout(x))
 | 
						|
        return x
 | 
						|
 | 
						|
    def forward(self, x, s):
 | 
						|
        out = self._residual(x, s)
 | 
						|
        out = (out + self._shortcut(x)) * torch.rsqrt(torch.tensor(2))
 | 
						|
        return out
 | 
						|
 | 
						|
 | 
						|
class Decoder(nn.Module):
 | 
						|
    def __init__(self, dim_in, style_dim, dim_out, 
 | 
						|
                 resblock_kernel_sizes,
 | 
						|
                 upsample_rates,
 | 
						|
                 upsample_initial_channel,
 | 
						|
                 resblock_dilation_sizes,
 | 
						|
                 upsample_kernel_sizes,
 | 
						|
                 gen_istft_n_fft, gen_istft_hop_size,
 | 
						|
                 disable_complex=False):
 | 
						|
        super().__init__()
 | 
						|
        self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
 | 
						|
        self.decode = nn.ModuleList()
 | 
						|
        self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
 | 
						|
        self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
 | 
						|
        self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
 | 
						|
        self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
 | 
						|
        self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
 | 
						|
        self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
 | 
						|
        self.asr_res = nn.Sequential(weight_norm(nn.Conv1d(512, 64, kernel_size=1)))
 | 
						|
        self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, 
 | 
						|
                                   upsample_initial_channel, resblock_dilation_sizes, 
 | 
						|
                                   upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, disable_complex=disable_complex)
 | 
						|
 | 
						|
    def forward(self, asr, F0_curve, N, s):
 | 
						|
        F0 = self.F0_conv(F0_curve.unsqueeze(1))
 | 
						|
        N = self.N_conv(N.unsqueeze(1))
 | 
						|
        x = torch.cat([asr, F0, N], axis=1)
 | 
						|
        x = self.encode(x, s)
 | 
						|
        asr_res = self.asr_res(asr)
 | 
						|
        res = True
 | 
						|
        for block in self.decode:
 | 
						|
            if res:
 | 
						|
                x = torch.cat([x, asr_res, F0, N], axis=1)
 | 
						|
            x = block(x, s)
 | 
						|
            if block.upsample_type != "none":
 | 
						|
                res = False
 | 
						|
        x = self.generator(x, s, F0_curve)
 | 
						|
        return x
 |