mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			805 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			805 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						||
import logging
 | 
						||
from mmgp import offload
 | 
						||
import torch
 | 
						||
import torch.cuda.amp as amp
 | 
						||
import torch.nn as nn
 | 
						||
import torch.nn.functional as F
 | 
						||
from einops import rearrange
 | 
						||
 | 
						||
__all__ = [
 | 
						||
    'WanVAE',
 | 
						||
]
 | 
						||
 | 
						||
CACHE_T = 2
 | 
						||
 | 
						||
 | 
						||
class CausalConv3d(nn.Conv3d):
 | 
						||
    """
 | 
						||
    Causal 3d convolusion.
 | 
						||
    """
 | 
						||
 | 
						||
    def __init__(self, *args, **kwargs):
 | 
						||
        super().__init__(*args, **kwargs)
 | 
						||
        self._padding = (self.padding[2], self.padding[2], self.padding[1],
 | 
						||
                         self.padding[1], 2 * self.padding[0], 0)
 | 
						||
        self.padding = (0, 0, 0)
 | 
						||
 | 
						||
    def forward(self, x, cache_x=None):
 | 
						||
        padding = list(self._padding)
 | 
						||
        if cache_x is not None and self._padding[4] > 0:
 | 
						||
            cache_x = cache_x.to(x.device)
 | 
						||
            x = torch.cat([cache_x, x], dim=2)
 | 
						||
            padding[4] -= cache_x.shape[2]
 | 
						||
            cache_x = None
 | 
						||
        x = F.pad(x, padding)
 | 
						||
        x = super().forward(x)
 | 
						||
 | 
						||
        return x
 | 
						||
 | 
						||
 | 
						||
class RMS_norm(nn.Module):
 | 
						||
 | 
						||
    def __init__(self, dim, channel_first=True, images=True, bias=False):
 | 
						||
        super().__init__()
 | 
						||
        broadcastable_dims = (1, 1, 1) if not images else (1, 1)
 | 
						||
        shape = (dim, *broadcastable_dims) if channel_first else (dim,)
 | 
						||
 | 
						||
        self.channel_first = channel_first
 | 
						||
        self.scale = dim**0.5
 | 
						||
        self.gamma = nn.Parameter(torch.ones(shape))
 | 
						||
        self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.
 | 
						||
 | 
						||
    def forward(self, x):
 | 
						||
        dtype = x.dtype
 | 
						||
        x = F.normalize(
 | 
						||
            x, dim=(1 if self.channel_first else
 | 
						||
                    -1)) * self.scale * self.gamma + self.bias
 | 
						||
        x = x.to(dtype)
 | 
						||
        return x 
 | 
						||
 | 
						||
class Upsample(nn.Upsample):
 | 
						||
 | 
						||
    def forward(self, x):
 | 
						||
        """
 | 
						||
        Fix bfloat16 support for nearest neighbor interpolation.
 | 
						||
        """
 | 
						||
        return super().forward(x.float()).type_as(x)
 | 
						||
 | 
						||
 | 
						||
class Resample(nn.Module):
 | 
						||
 | 
						||
    def __init__(self, dim, mode):
 | 
						||
        assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
 | 
						||
                        'downsample3d')
 | 
						||
        super().__init__()
 | 
						||
        self.dim = dim
 | 
						||
        self.mode = mode
 | 
						||
 | 
						||
        # layers
 | 
						||
        if mode == 'upsample2d':
 | 
						||
            self.resample = nn.Sequential(
 | 
						||
                Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
 | 
						||
                nn.Conv2d(dim, dim // 2, 3, padding=1))
 | 
						||
        elif mode == 'upsample3d':
 | 
						||
            self.resample = nn.Sequential(
 | 
						||
                Upsample(scale_factor=(2., 2.), mode='nearest-exact'),
 | 
						||
                nn.Conv2d(dim, dim // 2, 3, padding=1))
 | 
						||
            self.time_conv = CausalConv3d(
 | 
						||
                dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
 | 
						||
 | 
						||
        elif mode == 'downsample2d':
 | 
						||
            self.resample = nn.Sequential(
 | 
						||
                nn.ZeroPad2d((0, 1, 0, 1)),
 | 
						||
                nn.Conv2d(dim, dim, 3, stride=(2, 2)))
 | 
						||
        elif mode == 'downsample3d':
 | 
						||
            self.resample = nn.Sequential(
 | 
						||
                nn.ZeroPad2d((0, 1, 0, 1)),
 | 
						||
                nn.Conv2d(dim, dim, 3, stride=(2, 2)))
 | 
						||
            self.time_conv = CausalConv3d(
 | 
						||
                dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
 | 
						||
 | 
						||
        else:
 | 
						||
            self.resample = nn.Identity()
 | 
						||
 | 
						||
    def forward(self, x, feat_cache=None, feat_idx=[0]):
 | 
						||
        b, c, t, h, w = x.size()
 | 
						||
        if self.mode == 'upsample3d':
 | 
						||
            if feat_cache is not None:
 | 
						||
                idx = feat_idx[0]
 | 
						||
                if feat_cache[idx] is None:
 | 
						||
                    feat_cache[idx] = 'Rep'
 | 
						||
                    feat_idx[0] += 1
 | 
						||
                else:
 | 
						||
                    clone = True
 | 
						||
                    cache_x = x[:, :, -CACHE_T:, :, :]#.clone()
 | 
						||
                    if cache_x.shape[2] < 2 and feat_cache[
 | 
						||
                            idx] is not None and feat_cache[idx] != 'Rep':
 | 
						||
                        # cache last frame of last two chunk
 | 
						||
                        clone = False
 | 
						||
                        cache_x = torch.cat([
 | 
						||
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
 | 
						||
                                cache_x.device), cache_x
 | 
						||
                        ],
 | 
						||
                                            dim=2)
 | 
						||
                    if cache_x.shape[2] < 2 and feat_cache[
 | 
						||
                            idx] is not None and feat_cache[idx] == 'Rep':
 | 
						||
                        clone = False
 | 
						||
                        cache_x = torch.cat([
 | 
						||
                            torch.zeros_like(cache_x).to(cache_x.device),
 | 
						||
                            cache_x
 | 
						||
                        ],
 | 
						||
                                            dim=2)
 | 
						||
                    if clone:
 | 
						||
                        cache_x = cache_x.clone()
 | 
						||
                    if feat_cache[idx] == 'Rep':
 | 
						||
                        x = self.time_conv(x)
 | 
						||
                    else:
 | 
						||
                        x = self.time_conv(x, feat_cache[idx])
 | 
						||
                    feat_cache[idx] = cache_x
 | 
						||
                    feat_idx[0] += 1
 | 
						||
 | 
						||
                    x = x.reshape(b, 2, c, t, h, w)
 | 
						||
                    x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
 | 
						||
                                    3)
 | 
						||
                    x = x.reshape(b, c, t * 2, h, w)
 | 
						||
        t = x.shape[2]
 | 
						||
        x = rearrange(x, 'b c t h w -> (b t) c h w')
 | 
						||
        x = self.resample(x)
 | 
						||
        x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
 | 
						||
 | 
						||
        if self.mode == 'downsample3d':
 | 
						||
            if feat_cache is not None:
 | 
						||
                idx = feat_idx[0]
 | 
						||
                if feat_cache[idx] is None:
 | 
						||
                    feat_cache[idx] = x #.to("cpu") #x.clone() yyyy
 | 
						||
                    feat_idx[0] += 1
 | 
						||
                else:
 | 
						||
 | 
						||
                    cache_x = x[:, :, -1:, :, :].clone()
 | 
						||
                    # if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
 | 
						||
                    #     # cache last frame of last two chunk
 | 
						||
                    #     cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
 | 
						||
 | 
						||
                    x = self.time_conv(
 | 
						||
                        torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
 | 
						||
                    feat_cache[idx] = cache_x#.to("cpu") #yyyyy
 | 
						||
                    feat_idx[0] += 1
 | 
						||
        return x
 | 
						||
 | 
						||
    def init_weight(self, conv):
 | 
						||
        conv_weight = conv.weight
 | 
						||
        nn.init.zeros_(conv_weight)
 | 
						||
        c1, c2, t, h, w = conv_weight.size()
 | 
						||
        one_matrix = torch.eye(c1, c2)
 | 
						||
        init_matrix = one_matrix
 | 
						||
        nn.init.zeros_(conv_weight)
 | 
						||
        #conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
 | 
						||
        conv_weight.data[:, :, 1, 0, 0] = init_matrix  #* 0.5
 | 
						||
        conv.weight.data.copy_(conv_weight)
 | 
						||
        nn.init.zeros_(conv.bias.data)
 | 
						||
 | 
						||
    def init_weight2(self, conv):
 | 
						||
        conv_weight = conv.weight.data
 | 
						||
        nn.init.zeros_(conv_weight)
 | 
						||
        c1, c2, t, h, w = conv_weight.size()
 | 
						||
        init_matrix = torch.eye(c1 // 2, c2)
 | 
						||
        #init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
 | 
						||
        conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
 | 
						||
        conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
 | 
						||
        conv.weight.data.copy_(conv_weight)
 | 
						||
        nn.init.zeros_(conv.bias.data)
 | 
						||
 | 
						||
 | 
						||
class ResidualBlock(nn.Module):
 | 
						||
 | 
						||
    def __init__(self, in_dim, out_dim, dropout=0.0):
 | 
						||
        super().__init__()
 | 
						||
        self.in_dim = in_dim
 | 
						||
        self.out_dim = out_dim
 | 
						||
 | 
						||
        # layers
 | 
						||
        self.residual = nn.Sequential(
 | 
						||
            RMS_norm(in_dim, images=False), nn.SiLU(),
 | 
						||
            CausalConv3d(in_dim, out_dim, 3, padding=1),
 | 
						||
            RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
 | 
						||
            CausalConv3d(out_dim, out_dim, 3, padding=1))
 | 
						||
        self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
 | 
						||
            if in_dim != out_dim else nn.Identity()
 | 
						||
 | 
						||
    def forward(self, x, feat_cache=None, feat_idx=[0]):
 | 
						||
        h = self.shortcut(x)
 | 
						||
        dtype = x.dtype
 | 
						||
        for layer in self.residual:
 | 
						||
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
 | 
						||
                idx = feat_idx[0]
 | 
						||
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
 | 
						||
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
 | 
						||
                    # cache last frame of last two chunk
 | 
						||
                    cache_x = torch.cat([
 | 
						||
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
 | 
						||
                            cache_x.device), cache_x
 | 
						||
                    ],
 | 
						||
                                        dim=2)
 | 
						||
                x = layer(x, feat_cache[idx]).to(dtype)
 | 
						||
                feat_cache[idx] = cache_x#.to("cpu")
 | 
						||
                feat_idx[0] += 1
 | 
						||
            else:
 | 
						||
                x = layer(x).to(dtype)
 | 
						||
        return x + h
 | 
						||
 | 
						||
 | 
						||
class AttentionBlock(nn.Module):
 | 
						||
    """
 | 
						||
    Causal self-attention with a single head.
 | 
						||
    """
 | 
						||
 | 
						||
    def __init__(self, dim):
 | 
						||
        super().__init__()
 | 
						||
        self.dim = dim
 | 
						||
 | 
						||
        # layers
 | 
						||
        self.norm = RMS_norm(dim)
 | 
						||
        self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
 | 
						||
        self.proj = nn.Conv2d(dim, dim, 1)
 | 
						||
 | 
						||
        # zero out the last layer params
 | 
						||
        nn.init.zeros_(self.proj.weight)
 | 
						||
 | 
						||
    def forward(self, x):
 | 
						||
        identity = x
 | 
						||
        b, c, t, h, w = x.size()
 | 
						||
        x = rearrange(x, 'b c t h w -> (b t) c h w')
 | 
						||
        x = self.norm(x)
 | 
						||
        # compute query, key, value
 | 
						||
        q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3,
 | 
						||
                                         -1).permute(0, 1, 3,
 | 
						||
                                                     2).contiguous().chunk(
 | 
						||
                                                         3, dim=-1)
 | 
						||
 | 
						||
        # apply attention
 | 
						||
        x = F.scaled_dot_product_attention(
 | 
						||
            q,
 | 
						||
            k,
 | 
						||
            v,
 | 
						||
        )
 | 
						||
        x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
 | 
						||
 | 
						||
        # output
 | 
						||
        x = self.proj(x)
 | 
						||
        x = rearrange(x, '(b t) c h w-> b c t h w', t=t)
 | 
						||
        return x + identity
 | 
						||
 | 
						||
 | 
						||
class Encoder3d(nn.Module):
 | 
						||
 | 
						||
    def __init__(self,
 | 
						||
                 dim=128,
 | 
						||
                 z_dim=4,
 | 
						||
                 dim_mult=[1, 2, 4, 4],
 | 
						||
                 num_res_blocks=2,
 | 
						||
                 attn_scales=[],
 | 
						||
                 temperal_downsample=[True, True, False],
 | 
						||
                 dropout=0.0):
 | 
						||
        super().__init__()
 | 
						||
        self.dim = dim
 | 
						||
        self.z_dim = z_dim
 | 
						||
        self.dim_mult = dim_mult
 | 
						||
        self.num_res_blocks = num_res_blocks
 | 
						||
        self.attn_scales = attn_scales
 | 
						||
        self.temperal_downsample = temperal_downsample
 | 
						||
 | 
						||
        # dimensions
 | 
						||
        dims = [dim * u for u in [1] + dim_mult]
 | 
						||
        scale = 1.0
 | 
						||
 | 
						||
        # init block
 | 
						||
        self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
 | 
						||
 | 
						||
        # downsample blocks
 | 
						||
        downsamples = []
 | 
						||
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
 | 
						||
            # residual (+attention) blocks
 | 
						||
            for _ in range(num_res_blocks):
 | 
						||
                downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
 | 
						||
                if scale in attn_scales:
 | 
						||
                    downsamples.append(AttentionBlock(out_dim))
 | 
						||
                in_dim = out_dim
 | 
						||
 | 
						||
            # downsample block
 | 
						||
            if i != len(dim_mult) - 1:
 | 
						||
                mode = 'downsample3d' if temperal_downsample[
 | 
						||
                    i] else 'downsample2d'
 | 
						||
                downsamples.append(Resample(out_dim, mode=mode))
 | 
						||
                scale /= 2.0
 | 
						||
        self.downsamples = nn.Sequential(*downsamples)
 | 
						||
 | 
						||
        # middle blocks
 | 
						||
        self.middle = nn.Sequential(
 | 
						||
            ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim),
 | 
						||
            ResidualBlock(out_dim, out_dim, dropout))
 | 
						||
 | 
						||
        # output blocks
 | 
						||
        self.head = nn.Sequential(
 | 
						||
            RMS_norm(out_dim, images=False), nn.SiLU(),
 | 
						||
            CausalConv3d(out_dim, z_dim, 3, padding=1))
 | 
						||
 | 
						||
    def forward(self, x, feat_cache=None, feat_idx=[0]):
 | 
						||
        dtype = x.dtype
 | 
						||
        if feat_cache is not None:
 | 
						||
            idx = feat_idx[0]
 | 
						||
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
 | 
						||
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
 | 
						||
                # cache last frame of last two chunk
 | 
						||
                cache_x = torch.cat([
 | 
						||
                    feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
 | 
						||
                        cache_x.device), cache_x
 | 
						||
                ],
 | 
						||
                                    dim=2)
 | 
						||
            x = self.conv1(x, feat_cache[idx]).to(dtype)
 | 
						||
            feat_cache[idx] = cache_x
 | 
						||
            del cache_x
 | 
						||
            feat_idx[0] += 1
 | 
						||
        else:
 | 
						||
            x = self.conv1(x)
 | 
						||
 | 
						||
 | 
						||
        ## downsamples
 | 
						||
        for layer in self.downsamples:
 | 
						||
            if feat_cache is not None:
 | 
						||
                x = layer(x, feat_cache, feat_idx)
 | 
						||
            else:
 | 
						||
                x = layer(x)
 | 
						||
 | 
						||
 | 
						||
        ## middle
 | 
						||
        for layer in self.middle:
 | 
						||
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
 | 
						||
                x = layer(x, feat_cache, feat_idx)
 | 
						||
            else:
 | 
						||
                x = layer(x)
 | 
						||
 | 
						||
 | 
						||
        ## head
 | 
						||
        for layer in self.head:
 | 
						||
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
 | 
						||
                idx = feat_idx[0]
 | 
						||
                cache_x = x[:, :, -CACHE_T:, :, :].clone()
 | 
						||
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
 | 
						||
                    # cache last frame of last two chunk
 | 
						||
                    cache_x = torch.cat([
 | 
						||
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
 | 
						||
                            cache_x.device), cache_x
 | 
						||
                    ],
 | 
						||
                                        dim=2)
 | 
						||
                x = layer(x, feat_cache[idx])
 | 
						||
                feat_cache[idx] = cache_x
 | 
						||
                del cache_x
 | 
						||
                feat_idx[0] += 1
 | 
						||
            else:
 | 
						||
                x = layer(x)
 | 
						||
 | 
						||
 | 
						||
        return x
 | 
						||
 | 
						||
 | 
						||
class Decoder3d(nn.Module):
 | 
						||
 | 
						||
    def __init__(self,
 | 
						||
                 dim=128,
 | 
						||
                 z_dim=4,
 | 
						||
                 dim_mult=[1, 2, 4, 4],
 | 
						||
                 num_res_blocks=2,
 | 
						||
                 attn_scales=[],
 | 
						||
                 temperal_upsample=[False, True, True],
 | 
						||
                 dropout=0.0):
 | 
						||
        super().__init__()
 | 
						||
        self.dim = dim
 | 
						||
        self.z_dim = z_dim
 | 
						||
        self.dim_mult = dim_mult
 | 
						||
        self.num_res_blocks = num_res_blocks
 | 
						||
        self.attn_scales = attn_scales
 | 
						||
        self.temperal_upsample = temperal_upsample
 | 
						||
 | 
						||
        # dimensions
 | 
						||
        dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
 | 
						||
        scale = 1.0 / 2**(len(dim_mult) - 2)
 | 
						||
 | 
						||
        # init block
 | 
						||
        self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
 | 
						||
 | 
						||
        # middle blocks
 | 
						||
        self.middle = nn.Sequential(
 | 
						||
            ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
 | 
						||
            ResidualBlock(dims[0], dims[0], dropout))
 | 
						||
 | 
						||
        # upsample blocks
 | 
						||
        upsamples = []
 | 
						||
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
 | 
						||
            # residual (+attention) blocks
 | 
						||
            if i == 1 or i == 2 or i == 3:
 | 
						||
                in_dim = in_dim // 2
 | 
						||
            for _ in range(num_res_blocks + 1):
 | 
						||
                upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
 | 
						||
                if scale in attn_scales:
 | 
						||
                    upsamples.append(AttentionBlock(out_dim))
 | 
						||
                in_dim = out_dim
 | 
						||
 | 
						||
            # upsample block
 | 
						||
            if i != len(dim_mult) - 1:
 | 
						||
                mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
 | 
						||
                upsamples.append(Resample(out_dim, mode=mode))
 | 
						||
                scale *= 2.0
 | 
						||
        self.upsamples = nn.Sequential(*upsamples)
 | 
						||
 | 
						||
        # output blocks
 | 
						||
        self.head = nn.Sequential(
 | 
						||
            RMS_norm(out_dim, images=False), nn.SiLU(),
 | 
						||
            CausalConv3d(out_dim, 3, 3, padding=1))
 | 
						||
 | 
						||
    def forward(self, x, feat_cache=None, feat_idx=[0]):
 | 
						||
        ## conv1
 | 
						||
        if feat_cache is not None:
 | 
						||
            idx = feat_idx[0]
 | 
						||
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
 | 
						||
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
 | 
						||
                # cache last frame of last two chunk
 | 
						||
                cache_x = torch.cat([
 | 
						||
                    feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
 | 
						||
                        cache_x.device), cache_x
 | 
						||
                ],
 | 
						||
                                    dim=2)
 | 
						||
            x = self.conv1(x, feat_cache[idx])
 | 
						||
            feat_cache[idx] = cache_x#.to("cpu")
 | 
						||
            del cache_x
 | 
						||
            feat_idx[0] += 1
 | 
						||
        else:
 | 
						||
            x = self.conv1(x)
 | 
						||
        cache_x = None
 | 
						||
 | 
						||
        ## middle
 | 
						||
        for layer in self.middle:
 | 
						||
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
 | 
						||
                x = layer(x, feat_cache, feat_idx)
 | 
						||
            else:
 | 
						||
                x = layer(x)
 | 
						||
 | 
						||
        ## upsamples
 | 
						||
        for layer in self.upsamples:
 | 
						||
            if feat_cache is not None:
 | 
						||
                x = layer(x, feat_cache, feat_idx)
 | 
						||
            else:
 | 
						||
                x = layer(x)
 | 
						||
 | 
						||
        ## head
 | 
						||
        for layer in self.head:
 | 
						||
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
 | 
						||
                idx = feat_idx[0]
 | 
						||
                cache_x = x[:, :, -CACHE_T:, :, :] .clone()
 | 
						||
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
 | 
						||
                    # cache last frame of last two chunk
 | 
						||
                    cache_x = torch.cat([
 | 
						||
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
 | 
						||
                            cache_x.device), cache_x
 | 
						||
                    ],
 | 
						||
                                        dim=2)
 | 
						||
                x = layer(x, feat_cache[idx])
 | 
						||
                feat_cache[idx] = cache_x#.to("cpu")
 | 
						||
                del cache_x
 | 
						||
                feat_idx[0] += 1
 | 
						||
            else:
 | 
						||
                x = layer(x)
 | 
						||
        return x
 | 
						||
 | 
						||
 | 
						||
def count_conv3d(model):
 | 
						||
    count = 0
 | 
						||
    for m in model.modules():
 | 
						||
        if isinstance(m, CausalConv3d):
 | 
						||
            count += 1
 | 
						||
    return count
 | 
						||
 | 
						||
 | 
						||
class WanVAE_(nn.Module):
 | 
						||
 | 
						||
    def __init__(self,
 | 
						||
                 dim=128,
 | 
						||
                 z_dim=4,
 | 
						||
                 dim_mult=[1, 2, 4, 4],
 | 
						||
                 num_res_blocks=2,
 | 
						||
                 attn_scales=[],
 | 
						||
                 temperal_downsample=[True, True, False],
 | 
						||
                 dropout=0.0):
 | 
						||
        super().__init__()
 | 
						||
        self.dim = dim
 | 
						||
        self.z_dim = z_dim
 | 
						||
        self.dim_mult = dim_mult
 | 
						||
        self.num_res_blocks = num_res_blocks
 | 
						||
        self.attn_scales = attn_scales
 | 
						||
        self.temperal_downsample = temperal_downsample
 | 
						||
        self.temperal_upsample = temperal_downsample[::-1]
 | 
						||
 | 
						||
        # modules
 | 
						||
        self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
 | 
						||
                                 attn_scales, self.temperal_downsample, dropout)
 | 
						||
        self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
 | 
						||
        self.conv2 = CausalConv3d(z_dim, z_dim, 1)
 | 
						||
        self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
 | 
						||
                                 attn_scales, self.temperal_upsample, dropout)
 | 
						||
 | 
						||
    def forward(self, x):
 | 
						||
        mu, log_var = self.encode(x)
 | 
						||
        z = self.reparameterize(mu, log_var)
 | 
						||
        x_recon = self.decode(z)
 | 
						||
        return x_recon, mu, log_var
 | 
						||
 | 
						||
    def encode(self, x, scale = None, any_end_frame = False):
 | 
						||
        self.clear_cache()
 | 
						||
        ## cache
 | 
						||
        t = x.shape[2]
 | 
						||
        if any_end_frame:
 | 
						||
            iter_ = 2 + (t - 2) // 4
 | 
						||
        else:
 | 
						||
            iter_ = 1 + (t - 1) // 4
 | 
						||
        ## 对encode输入的x,按时间拆分为1、4、4、4....
 | 
						||
        out_list = []
 | 
						||
        for i in range(iter_):
 | 
						||
            self._enc_conv_idx = [0]
 | 
						||
            if i == 0:
 | 
						||
                out_list.append(self.encoder(
 | 
						||
                    x[:, :, :1, :, :],
 | 
						||
                    feat_cache=self._enc_feat_map,
 | 
						||
                    feat_idx=self._enc_conv_idx))
 | 
						||
            elif any_end_frame and i== iter_ -1:
 | 
						||
                out_list.append(self.encoder(
 | 
						||
                    x[:, :, -1:, :, :],
 | 
						||
                    feat_cache= None,
 | 
						||
                    feat_idx=self._enc_conv_idx))
 | 
						||
            else:
 | 
						||
                out_list.append(self.encoder(
 | 
						||
                    x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
 | 
						||
                    feat_cache=self._enc_feat_map,
 | 
						||
                    feat_idx=self._enc_conv_idx))
 | 
						||
 | 
						||
        self.clear_cache()
 | 
						||
        out = torch.cat(out_list, 2)
 | 
						||
        out_list = None
 | 
						||
 | 
						||
        mu, log_var = self.conv1(out).chunk(2, dim=1)
 | 
						||
        if scale != None:
 | 
						||
            if isinstance(scale[0], torch.Tensor):
 | 
						||
                mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
 | 
						||
                    1, self.z_dim, 1, 1, 1)
 | 
						||
            else:
 | 
						||
                mu = (mu - scale[0]) * scale[1]
 | 
						||
        return mu
 | 
						||
 | 
						||
 | 
						||
    def decode(self, z, scale=None, any_end_frame = False):
 | 
						||
        self.clear_cache()
 | 
						||
        # z: [b,c,t,h,w]
 | 
						||
        if scale != None:
 | 
						||
            if isinstance(scale[0], torch.Tensor):
 | 
						||
                z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
 | 
						||
                    1, self.z_dim, 1, 1, 1)
 | 
						||
            else:
 | 
						||
                z = z / scale[1] + scale[0]
 | 
						||
        iter_ = z.shape[2]
 | 
						||
        x = self.conv2(z)
 | 
						||
        out_list = []
 | 
						||
        for i in range(iter_):
 | 
						||
            self._conv_idx = [0]
 | 
						||
            if i == 0:
 | 
						||
                out_list.append(self.decoder(
 | 
						||
                    x[:, :, i:i + 1, :, :],
 | 
						||
                    feat_cache=self._feat_map,
 | 
						||
                    feat_idx=self._conv_idx))
 | 
						||
            elif any_end_frame and i==iter_-1:
 | 
						||
                out_list.append(self.decoder(
 | 
						||
                    x[:, :, -1:, :, :],
 | 
						||
                    feat_cache=None ,
 | 
						||
                    feat_idx=self._conv_idx))
 | 
						||
            else:
 | 
						||
                out_list.append(self.decoder(
 | 
						||
                    x[:, :, i:i + 1, :, :],
 | 
						||
                    feat_cache=self._feat_map,
 | 
						||
                    feat_idx=self._conv_idx))
 | 
						||
        self.clear_cache()
 | 
						||
        out = torch.cat(out_list, 2)
 | 
						||
        return out
 | 
						||
    
 | 
						||
    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
 | 
						||
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
 | 
						||
        for y in range(blend_extent):
 | 
						||
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
 | 
						||
        return b
 | 
						||
 | 
						||
    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
 | 
						||
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
 | 
						||
        for x in range(blend_extent):
 | 
						||
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
 | 
						||
        return b
 | 
						||
    
 | 
						||
    def spatial_tiled_decode(self, z, scale, tile_size, any_end_frame= False):
 | 
						||
        tile_sample_min_size = tile_size
 | 
						||
        tile_latent_min_size = int(tile_sample_min_size / 8)
 | 
						||
        tile_overlap_factor = 0.25
 | 
						||
 | 
						||
        # z: [b,c,t,h,w]
 | 
						||
 | 
						||
        if isinstance(scale[0], torch.Tensor):
 | 
						||
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
 | 
						||
                1, self.z_dim, 1, 1, 1)
 | 
						||
        else:
 | 
						||
            z = z / scale[1] + scale[0]
 | 
						||
 | 
						||
 | 
						||
        overlap_size = int(tile_latent_min_size * (1 - tile_overlap_factor)) #8 0.75
 | 
						||
        blend_extent = int(tile_sample_min_size * tile_overlap_factor) #256 0.25
 | 
						||
        row_limit = tile_sample_min_size - blend_extent
 | 
						||
 | 
						||
        # Split z into overlapping tiles and decode them separately.
 | 
						||
        # The tiles have an overlap to avoid seams between tiles.
 | 
						||
        rows = []
 | 
						||
        for i in range(0, z.shape[-2], overlap_size):
 | 
						||
            row = []
 | 
						||
            for j in range(0, z.shape[-1], overlap_size):
 | 
						||
                tile = z[:, :, :, i: i + tile_latent_min_size, j: j + tile_latent_min_size]
 | 
						||
                decoded = self.decode(tile, any_end_frame= any_end_frame)
 | 
						||
                row.append(decoded)
 | 
						||
            rows.append(row)
 | 
						||
        result_rows = []
 | 
						||
        for i, row in enumerate(rows):
 | 
						||
            result_row = []
 | 
						||
            for j, tile in enumerate(row):
 | 
						||
                # blend the above tile and the left tile
 | 
						||
                # to the current tile and add the current tile to the result row
 | 
						||
                if i > 0:
 | 
						||
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
 | 
						||
                if j > 0:
 | 
						||
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
 | 
						||
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
 | 
						||
            result_rows.append(torch.cat(result_row, dim=-1))
 | 
						||
 | 
						||
        return torch.cat(result_rows, dim=-2)
 | 
						||
 | 
						||
 | 
						||
    def spatial_tiled_encode(self, x, scale, tile_size, any_end_frame = False) :
 | 
						||
        tile_sample_min_size = tile_size
 | 
						||
        tile_latent_min_size = int(tile_sample_min_size / 8)
 | 
						||
        tile_overlap_factor = 0.25
 | 
						||
 | 
						||
        overlap_size = int(tile_sample_min_size * (1 - tile_overlap_factor))
 | 
						||
        blend_extent = int(tile_latent_min_size * tile_overlap_factor)
 | 
						||
        row_limit = tile_latent_min_size - blend_extent
 | 
						||
 | 
						||
        # Split video into tiles and encode them separately.
 | 
						||
        rows = []
 | 
						||
        for i in range(0, x.shape[-2], overlap_size):
 | 
						||
            row = []
 | 
						||
            for j in range(0, x.shape[-1], overlap_size):
 | 
						||
                tile = x[:, :, :, i: i + tile_sample_min_size, j: j + tile_sample_min_size]
 | 
						||
                tile = self.encode(tile, any_end_frame= any_end_frame)
 | 
						||
                row.append(tile)
 | 
						||
            rows.append(row)
 | 
						||
        result_rows = []
 | 
						||
        for i, row in enumerate(rows):
 | 
						||
            result_row = []
 | 
						||
            for j, tile in enumerate(row):
 | 
						||
                # blend the above tile and the left tile
 | 
						||
                # to the current tile and add the current tile to the result row
 | 
						||
                if i > 0:
 | 
						||
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
 | 
						||
                if j > 0:
 | 
						||
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
 | 
						||
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
 | 
						||
            result_rows.append(torch.cat(result_row, dim=-1))
 | 
						||
 | 
						||
        mu = torch.cat(result_rows, dim=-2)
 | 
						||
 | 
						||
        if isinstance(scale[0], torch.Tensor):
 | 
						||
            mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
 | 
						||
                1, self.z_dim, 1, 1, 1)
 | 
						||
        else:
 | 
						||
            mu = (mu - scale[0]) * scale[1]
 | 
						||
 | 
						||
        return mu
 | 
						||
 | 
						||
 | 
						||
    def reparameterize(self, mu, log_var):
 | 
						||
        std = torch.exp(0.5 * log_var)
 | 
						||
        eps = torch.randn_like(std)
 | 
						||
        return eps * std + mu
 | 
						||
 | 
						||
    def sample(self, imgs, deterministic=False):
 | 
						||
        mu, log_var = self.encode(imgs)
 | 
						||
        if deterministic:
 | 
						||
            return mu
 | 
						||
        std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
 | 
						||
        return mu + std * torch.randn_like(std)
 | 
						||
 | 
						||
    def clear_cache(self):
 | 
						||
        self._conv_num = count_conv3d(self.decoder)
 | 
						||
        self._conv_idx = [0]
 | 
						||
        self._feat_map = [None] * self._conv_num
 | 
						||
        #cache encode
 | 
						||
        self._enc_conv_num = count_conv3d(self.encoder)
 | 
						||
        self._enc_conv_idx = [0]
 | 
						||
        self._enc_feat_map = [None] * self._enc_conv_num
 | 
						||
 | 
						||
 | 
						||
def _video_vae(pretrained_path=None, z_dim=None, device='cpu', **kwargs):
 | 
						||
    """
 | 
						||
    Autoencoder3d adapted from Stable Diffusion 1.x, 2.x and XL.
 | 
						||
    """
 | 
						||
    # params
 | 
						||
    cfg = dict(
 | 
						||
        dim=96,
 | 
						||
        z_dim=z_dim,
 | 
						||
        dim_mult=[1, 2, 4, 4],
 | 
						||
        num_res_blocks=2,
 | 
						||
        attn_scales=[],
 | 
						||
        temperal_downsample=[False, True, True],
 | 
						||
        dropout=0.0)
 | 
						||
    cfg.update(**kwargs)
 | 
						||
 | 
						||
    # init model
 | 
						||
    with torch.device('meta'):
 | 
						||
        model = WanVAE_(**cfg)
 | 
						||
 | 
						||
    from mmgp import offload
 | 
						||
    # load checkpoint
 | 
						||
    logging.info(f'loading {pretrained_path}')
 | 
						||
    # model.load_state_dict(
 | 
						||
    #     torch.load(pretrained_path, map_location=device), assign=True)
 | 
						||
    # offload.load_model_data(model, pretrained_path.replace(".pth", "_bf16.safetensors"), writable_tensors= False)    
 | 
						||
    offload.load_model_data(model, pretrained_path.replace(".pth", ".safetensors"), writable_tensors= False)    
 | 
						||
    return model
 | 
						||
 | 
						||
 | 
						||
class WanVAE:
 | 
						||
 | 
						||
    def __init__(self,
 | 
						||
                 z_dim=16,
 | 
						||
                 vae_pth='cache/vae_step_411000.pth',
 | 
						||
                 dtype=torch.float,
 | 
						||
                 device="cuda"):
 | 
						||
        self.dtype = dtype
 | 
						||
        self.device = device
 | 
						||
 | 
						||
        mean = [
 | 
						||
            -0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
 | 
						||
            0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
 | 
						||
        ]
 | 
						||
        std = [
 | 
						||
            2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
 | 
						||
            3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
 | 
						||
        ]
 | 
						||
        self.mean = torch.tensor(mean, dtype=dtype, device=device)
 | 
						||
        self.std = torch.tensor(std, dtype=dtype, device=device)
 | 
						||
        self.scale = [self.mean, 1.0 / self.std]
 | 
						||
 | 
						||
        # init model
 | 
						||
        self.model = _video_vae(
 | 
						||
            pretrained_path=vae_pth,
 | 
						||
            z_dim=z_dim,
 | 
						||
        ).to(dtype).eval() #.requires_grad_(False).to(device)
 | 
						||
    
 | 
						||
    def encode(self, videos, tile_size = 256, any_end_frame = False):
 | 
						||
        """
 | 
						||
        videos: A list of videos each with shape [C, T, H, W].
 | 
						||
        """
 | 
						||
        original_dtype = videos[0].dtype
 | 
						||
        
 | 
						||
        if tile_size > 0:
 | 
						||
            return [ self.model.spatial_tiled_encode(u.to(self.dtype).unsqueeze(0), self.scale, tile_size, any_end_frame=any_end_frame).float().squeeze(0) for u in videos ]
 | 
						||
        else:
 | 
						||
            return [ self.model.encode(u.to(self.dtype).unsqueeze(0), self.scale, any_end_frame=any_end_frame).float().squeeze(0) for u in videos ]
 | 
						||
 | 
						||
 | 
						||
    def decode(self, zs, tile_size, any_end_frame = False):
 | 
						||
        if tile_size > 0:
 | 
						||
            return [ self.model.spatial_tiled_decode(u.to(self.dtype).unsqueeze(0), self.scale, tile_size, any_end_frame=any_end_frame).clamp_(-1, 1).float().squeeze(0) for u in zs ]
 | 
						||
        else:
 | 
						||
            return [ self.model.decode(u.to(self.dtype).unsqueeze(0), self.scale, any_end_frame=any_end_frame).clamp_(-1, 1).float().squeeze(0) for u in zs ]
 |