mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 22:26:36 +00:00
922 lines
39 KiB
Python
922 lines
39 KiB
Python
import torch
|
||
import torchaudio
|
||
import numpy as np
|
||
import os
|
||
import warnings
|
||
from pathlib import Path
|
||
from typing import Dict, List, Tuple
|
||
import argparse
|
||
from concurrent.futures import ThreadPoolExecutor
|
||
import gc
|
||
import logging
|
||
|
||
verbose_output = True
|
||
|
||
# Suppress specific warnings before importing pyannote
|
||
warnings.filterwarnings("ignore", category=UserWarning, module="pyannote.audio.models.blocks.pooling")
|
||
warnings.filterwarnings("ignore", message=".*TensorFloat-32.*", category=UserWarning)
|
||
warnings.filterwarnings("ignore", message=".*std\\(\\): degrees of freedom.*", category=UserWarning)
|
||
warnings.filterwarnings("ignore", message=".*speechbrain.pretrained.*was deprecated.*", category=UserWarning)
|
||
warnings.filterwarnings("ignore", message=".*Module 'speechbrain.pretrained'.*", category=UserWarning)
|
||
# logging.getLogger('speechbrain').setLevel(logging.WARNING)
|
||
# logging.getLogger('speechbrain.utils.checkpoints').setLevel(logging.WARNING)
|
||
os.environ["SB_LOG_LEVEL"] = "WARNING"
|
||
import speechbrain
|
||
|
||
def xprint(t = None):
|
||
if verbose_output:
|
||
print(t)
|
||
|
||
# Configure TF32 before any CUDA operations to avoid reproducibility warnings
|
||
if torch.cuda.is_available():
|
||
torch.backends.cuda.matmul.allow_tf32 = True
|
||
torch.backends.cudnn.allow_tf32 = True
|
||
|
||
try:
|
||
from pyannote.audio import Pipeline
|
||
PYANNOTE_AVAILABLE = True
|
||
except ImportError:
|
||
PYANNOTE_AVAILABLE = False
|
||
print("Install: pip install pyannote.audio")
|
||
|
||
|
||
class OptimizedPyannote31SpeakerSeparator:
|
||
def __init__(self, hf_token: str = None, local_model_path: str = None,
|
||
vad_onset: float = 0.2, vad_offset: float = 0.8):
|
||
"""
|
||
Initialize with Pyannote 3.1 pipeline with tunable VAD sensitivity.
|
||
"""
|
||
embedding_path = "ckpts/pyannote/pyannote_model_wespeaker-voxceleb-resnet34-LM.bin"
|
||
segmentation_path = "ckpts/pyannote/pytorch_model_segmentation-3.0.bin"
|
||
|
||
|
||
xprint(f"Loading segmentation model from: {segmentation_path}")
|
||
xprint(f"Loading embedding model from: {embedding_path}")
|
||
|
||
try:
|
||
from pyannote.audio import Model
|
||
from pyannote.audio.pipelines import SpeakerDiarization
|
||
|
||
# Load models directly
|
||
segmentation_model = Model.from_pretrained(segmentation_path)
|
||
embedding_model = Model.from_pretrained(embedding_path)
|
||
xprint("Models loaded successfully!")
|
||
|
||
# Create pipeline manually
|
||
self.pipeline = SpeakerDiarization(
|
||
segmentation=segmentation_model,
|
||
embedding=embedding_model,
|
||
clustering='AgglomerativeClustering'
|
||
)
|
||
|
||
# Instantiate with default parameters
|
||
self.pipeline.instantiate({
|
||
'clustering': {
|
||
'method': 'centroid',
|
||
'min_cluster_size': 12,
|
||
'threshold': 0.7045654963945799
|
||
},
|
||
'segmentation': {
|
||
'min_duration_off': 0.0
|
||
}
|
||
})
|
||
xprint("Pipeline instantiated successfully!")
|
||
|
||
# Send to GPU if available
|
||
if torch.cuda.is_available():
|
||
xprint("CUDA available, moving pipeline to GPU...")
|
||
self.pipeline.to(torch.device("cuda"))
|
||
else:
|
||
xprint("CUDA not available, using CPU...")
|
||
|
||
except Exception as e:
|
||
xprint(f"Error loading pipeline: {e}")
|
||
xprint(f"Error type: {type(e)}")
|
||
import traceback
|
||
traceback.xprint_exc()
|
||
raise
|
||
|
||
|
||
self.hf_token = hf_token
|
||
self._overlap_pipeline = None
|
||
|
||
def separate_audio(self, audio_path: str, output1, output2 ) -> Dict[str, str]:
|
||
"""Optimized main separation function with memory management."""
|
||
xprint("Starting optimized audio separation...")
|
||
self._current_audio_path = os.path.abspath(audio_path)
|
||
|
||
# Suppress warnings during processing
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
|
||
# Load audio
|
||
waveform, sample_rate = self.load_audio(audio_path)
|
||
|
||
# Perform diarization
|
||
diarization = self.perform_optimized_diarization(audio_path)
|
||
|
||
# Create masks
|
||
masks = self.create_optimized_speaker_masks(diarization, waveform.shape[1], sample_rate)
|
||
|
||
# Apply background preservation
|
||
final_masks = self.apply_optimized_background_preservation(masks, waveform.shape[1])
|
||
|
||
# Clear intermediate results
|
||
del masks
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
gc.collect()
|
||
|
||
# Save outputs efficiently
|
||
output_paths = self._save_outputs_optimized(waveform, final_masks, sample_rate, audio_path, output1, output2)
|
||
|
||
return output_paths
|
||
|
||
def _extract_both_speaking_regions(
|
||
self,
|
||
diarization,
|
||
audio_length: int,
|
||
sample_rate: int
|
||
) -> np.ndarray:
|
||
"""
|
||
Detect regions where ≥2 speakers talk simultaneously
|
||
using pyannote/overlapped-speech-detection.
|
||
Falls back to manual pair-wise detection if the model
|
||
is unavailable.
|
||
"""
|
||
xprint("Extracting overlap with dedicated pipeline…")
|
||
both_speaking_mask = np.zeros(audio_length, dtype=bool)
|
||
|
||
# ── 1) try the proper overlap model ────────────────────────────────
|
||
overlap_pipeline = self._get_overlap_pipeline()
|
||
|
||
# try the path stored by separate_audio – otherwise whatever the
|
||
# diarization object carries (may be None)
|
||
audio_uri = getattr(self, "_current_audio_path", None) \
|
||
or getattr(diarization, "uri", None)
|
||
if overlap_pipeline and audio_uri:
|
||
try:
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
overlap_annotation = overlap_pipeline(audio_uri)
|
||
|
||
for seg in overlap_annotation.get_timeline().support():
|
||
s = max(0, int(seg.start * sample_rate))
|
||
e = min(audio_length, int(seg.end * sample_rate))
|
||
if s < e:
|
||
both_speaking_mask[s:e] = True
|
||
t = np.sum(both_speaking_mask) / sample_rate
|
||
xprint(f" Found {t:.1f}s of overlapped speech (model) ")
|
||
return both_speaking_mask
|
||
except Exception as e:
|
||
xprint(f" ⚠ Overlap model failed: {e}")
|
||
|
||
# ── 2) fallback = brute-force pairwise intersection ────────────────
|
||
xprint(" Falling back to manual overlap detection…")
|
||
timeline_tracks = list(diarization.itertracks(yield_label=True))
|
||
for i, (turn1, _, spk1) in enumerate(timeline_tracks):
|
||
for j, (turn2, _, spk2) in enumerate(timeline_tracks):
|
||
if i >= j or spk1 == spk2:
|
||
continue
|
||
o_start, o_end = max(turn1.start, turn2.start), min(turn1.end, turn2.end)
|
||
if o_start < o_end:
|
||
s = max(0, int(o_start * sample_rate))
|
||
e = min(audio_length, int(o_end * sample_rate))
|
||
if s < e:
|
||
both_speaking_mask[s:e] = True
|
||
t = np.sum(both_speaking_mask) / sample_rate
|
||
xprint(f" Found {t:.1f}s of overlapped speech (manual) ")
|
||
return both_speaking_mask
|
||
|
||
def _configure_vad(self, vad_onset: float, vad_offset: float):
|
||
"""Configure VAD parameters efficiently."""
|
||
xprint("Applying more sensitive VAD parameters...")
|
||
try:
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
|
||
if hasattr(self.pipeline, '_vad'):
|
||
self.pipeline._vad.instantiate({
|
||
"onset": vad_onset,
|
||
"offset": vad_offset,
|
||
"min_duration_on": 0.1,
|
||
"min_duration_off": 0.1,
|
||
"pad_onset": 0.1,
|
||
"pad_offset": 0.1,
|
||
})
|
||
xprint(f"✓ VAD parameters updated: onset={vad_onset}, offset={vad_offset}")
|
||
else:
|
||
xprint("⚠ Could not access VAD component directly")
|
||
except Exception as e:
|
||
xprint(f"⚠ Could not modify VAD parameters: {e}")
|
||
|
||
def _get_overlap_pipeline(self):
|
||
"""
|
||
Build a pyannote-3-native OverlappedSpeechDetection pipeline.
|
||
|
||
• uses the open-licence `pyannote/segmentation-3.0` checkpoint
|
||
• only `min_duration_on/off` can be tuned (API 3.x)
|
||
"""
|
||
if self._overlap_pipeline is not None:
|
||
return None if self._overlap_pipeline is False else self._overlap_pipeline
|
||
|
||
try:
|
||
from pyannote.audio.pipelines import OverlappedSpeechDetection
|
||
|
||
xprint("Building OverlappedSpeechDetection with segmentation-3.0…")
|
||
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
|
||
# 1) constructor → segmentation model ONLY
|
||
ods = OverlappedSpeechDetection(
|
||
segmentation="pyannote/segmentation-3.0"
|
||
)
|
||
|
||
# 2) instantiate → **single dict** with the two valid knobs
|
||
ods.instantiate({
|
||
"min_duration_on": 0.06, # ≈ your previous 0.055 s
|
||
"min_duration_off": 0.10, # ≈ your previous 0.098 s
|
||
})
|
||
|
||
if torch.cuda.is_available():
|
||
ods.to(torch.device("cuda"))
|
||
|
||
self._overlap_pipeline = ods
|
||
xprint("✓ Overlap pipeline ready (segmentation-3.0)")
|
||
return ods
|
||
|
||
except Exception as e:
|
||
xprint(f"⚠ Could not build overlap pipeline ({e}). "
|
||
"Falling back to manual pair-wise detection.")
|
||
self._overlap_pipeline = False
|
||
return None
|
||
|
||
def _xprint_setup_instructions(self):
|
||
"""xprint setup instructions."""
|
||
xprint("\nTo use Pyannote 3.1:")
|
||
xprint("1. Get token: https://huggingface.co/settings/tokens")
|
||
xprint("2. Accept terms: https://huggingface.co/pyannote/speaker-diarization-3.1")
|
||
xprint("3. Run with: --token YOUR_TOKEN")
|
||
|
||
def load_audio(self, audio_path: str) -> Tuple[torch.Tensor, int]:
|
||
"""Load and preprocess audio efficiently."""
|
||
xprint(f"Loading audio: {audio_path}")
|
||
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
waveform, sample_rate = torchaudio.load(audio_path)
|
||
|
||
# Convert to mono efficiently
|
||
if waveform.shape[0] > 1:
|
||
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
||
|
||
xprint(f"Audio: {waveform.shape[1]} samples at {sample_rate}Hz")
|
||
return waveform, sample_rate
|
||
|
||
def perform_optimized_diarization(self, audio_path: str) -> object:
|
||
"""
|
||
Optimized diarization with efficient parameter testing.
|
||
"""
|
||
xprint("Running optimized Pyannote 3.1 diarization...")
|
||
|
||
# Optimized strategy order - most likely to succeed first
|
||
strategies = [
|
||
{"min_speakers": 2, "max_speakers": 2}, # Most common case
|
||
{"num_speakers": 2}, # Direct specification
|
||
{"min_speakers": 2, "max_speakers": 3}, # Slight flexibility
|
||
{"min_speakers": 1, "max_speakers": 2}, # Fallback
|
||
{"min_speakers": 2, "max_speakers": 4}, # More flexibility
|
||
{} # No constraints
|
||
]
|
||
|
||
for i, params in enumerate(strategies):
|
||
try:
|
||
xprint(f"Strategy {i+1}: {params}")
|
||
|
||
# Clear GPU memory before each attempt
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
diarization = self.pipeline(audio_path, **params)
|
||
|
||
speakers = list(diarization.labels())
|
||
speaker_count = len(speakers)
|
||
|
||
xprint(f" → Detected {speaker_count} speakers: {speakers}")
|
||
|
||
# Accept first successful result with 2+ speakers
|
||
if speaker_count >= 2:
|
||
xprint(f"✓ Success with strategy {i+1}! Using {speaker_count} speakers")
|
||
return diarization
|
||
elif speaker_count == 1 and i == 0:
|
||
# Store first result as fallback
|
||
fallback_diarization = diarization
|
||
|
||
except Exception as e:
|
||
xprint(f" Strategy {i+1} failed: {e}")
|
||
continue
|
||
|
||
# If we only got 1 speaker, try one aggressive attempt
|
||
if 'fallback_diarization' in locals():
|
||
xprint("Attempting aggressive clustering for single speaker...")
|
||
try:
|
||
aggressive_diarization = self._try_aggressive_clustering(audio_path)
|
||
if aggressive_diarization and len(list(aggressive_diarization.labels())) >= 2:
|
||
return aggressive_diarization
|
||
except Exception as e:
|
||
xprint(f"Aggressive clustering failed: {e}")
|
||
|
||
xprint("Using single speaker result")
|
||
return fallback_diarization
|
||
|
||
# Last resort - run without constraints
|
||
xprint("Last resort: running without constraints...")
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
return self.pipeline(audio_path)
|
||
|
||
def _try_aggressive_clustering(self, audio_path: str) -> object:
|
||
"""Try aggressive clustering parameters."""
|
||
try:
|
||
from pyannote.audio.pipelines.speaker_diarization import SpeakerDiarization
|
||
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
|
||
# Create aggressive pipeline
|
||
temp_pipeline = SpeakerDiarization(
|
||
segmentation=self.pipeline.segmentation,
|
||
embedding=self.pipeline.embedding,
|
||
clustering="AgglomerativeClustering"
|
||
)
|
||
|
||
temp_pipeline.instantiate({
|
||
"clustering": {
|
||
"method": "centroid",
|
||
"min_cluster_size": 1,
|
||
"threshold": 0.1,
|
||
},
|
||
"segmentation": {
|
||
"min_duration_off": 0.0,
|
||
"min_duration_on": 0.1,
|
||
}
|
||
})
|
||
|
||
return temp_pipeline(audio_path, min_speakers=2)
|
||
|
||
except Exception as e:
|
||
xprint(f"Aggressive clustering setup failed: {e}")
|
||
return None
|
||
|
||
def create_optimized_speaker_masks(self, diarization, audio_length: int, sample_rate: int) -> Dict[str, np.ndarray]:
|
||
"""Optimized mask creation using vectorized operations."""
|
||
xprint("Creating optimized speaker masks...")
|
||
|
||
speakers = list(diarization.labels())
|
||
xprint(f"Processing speakers: {speakers}")
|
||
|
||
# Handle edge cases
|
||
if len(speakers) == 0:
|
||
xprint("⚠ No speakers detected, creating dummy masks")
|
||
return self._create_dummy_masks(audio_length)
|
||
|
||
if len(speakers) == 1:
|
||
xprint("⚠ Only 1 speaker detected, creating temporal split")
|
||
return self._create_optimized_temporal_split(diarization, audio_length, sample_rate)
|
||
|
||
# Extract both-speaking regions from diarization timeline
|
||
both_speaking_regions = self._extract_both_speaking_regions(diarization, audio_length, sample_rate)
|
||
|
||
# Optimized mask creation for multiple speakers
|
||
masks = {}
|
||
|
||
# Batch process all speakers
|
||
for speaker in speakers:
|
||
# Get all segments for this speaker at once
|
||
segments = []
|
||
speaker_timeline = diarization.label_timeline(speaker)
|
||
for segment in speaker_timeline:
|
||
start_sample = max(0, int(segment.start * sample_rate))
|
||
end_sample = min(audio_length, int(segment.end * sample_rate))
|
||
if start_sample < end_sample:
|
||
segments.append((start_sample, end_sample))
|
||
|
||
# Vectorized mask creation
|
||
if segments:
|
||
mask = self._create_mask_vectorized(segments, audio_length)
|
||
masks[speaker] = mask
|
||
speaking_time = np.sum(mask) / sample_rate
|
||
xprint(f" {speaker}: {speaking_time:.1f}s speaking time")
|
||
else:
|
||
masks[speaker] = np.zeros(audio_length, dtype=np.float32)
|
||
|
||
# Store both-speaking info for later use
|
||
self._both_speaking_regions = both_speaking_regions
|
||
|
||
return masks
|
||
|
||
def _create_mask_vectorized(self, segments: List[Tuple[int, int]], audio_length: int) -> np.ndarray:
|
||
"""Create mask using vectorized operations."""
|
||
mask = np.zeros(audio_length, dtype=np.float32)
|
||
|
||
if not segments:
|
||
return mask
|
||
|
||
# Convert segments to arrays for vectorized operations
|
||
segments_array = np.array(segments)
|
||
starts = segments_array[:, 0]
|
||
ends = segments_array[:, 1]
|
||
|
||
# Use advanced indexing for bulk assignment
|
||
for start, end in zip(starts, ends):
|
||
mask[start:end] = 1.0
|
||
|
||
return mask
|
||
|
||
def _create_dummy_masks(self, audio_length: int) -> Dict[str, np.ndarray]:
|
||
"""Create dummy masks for edge cases."""
|
||
return {
|
||
"SPEAKER_00": np.ones(audio_length, dtype=np.float32) * 0.5,
|
||
"SPEAKER_01": np.ones(audio_length, dtype=np.float32) * 0.5
|
||
}
|
||
|
||
def _create_optimized_temporal_split(self, diarization, audio_length: int, sample_rate: int) -> Dict[str, np.ndarray]:
|
||
"""Optimized temporal split with vectorized operations."""
|
||
xprint("Creating optimized temporal split...")
|
||
|
||
# Extract all segments at once
|
||
segments = []
|
||
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
||
segments.append((turn.start, turn.end))
|
||
|
||
segments.sort()
|
||
xprint(f"Found {len(segments)} speech segments")
|
||
|
||
if len(segments) <= 1:
|
||
# Single segment or no segments - simple split
|
||
return self._create_simple_split(audio_length)
|
||
|
||
# Vectorized gap analysis
|
||
segment_array = np.array(segments)
|
||
gaps = segment_array[1:, 0] - segment_array[:-1, 1] # Vectorized gap calculation
|
||
|
||
if len(gaps) > 0:
|
||
longest_gap_idx = np.argmax(gaps)
|
||
longest_gap_duration = gaps[longest_gap_idx]
|
||
|
||
xprint(f"Longest gap: {longest_gap_duration:.1f}s after segment {longest_gap_idx+1}")
|
||
|
||
if longest_gap_duration > 1.0:
|
||
# Split at natural break
|
||
split_point = longest_gap_idx + 1
|
||
xprint(f"Splitting at natural break: segments 1-{split_point} vs {split_point+1}-{len(segments)}")
|
||
|
||
return self._create_split_masks(segments, split_point, audio_length, sample_rate)
|
||
|
||
# Fallback: alternating assignment
|
||
xprint("Using alternating assignment...")
|
||
return self._create_alternating_masks(segments, audio_length, sample_rate)
|
||
|
||
def _create_simple_split(self, audio_length: int) -> Dict[str, np.ndarray]:
|
||
"""Simple temporal split in half."""
|
||
mid_point = audio_length // 2
|
||
masks = {
|
||
"SPEAKER_00": np.zeros(audio_length, dtype=np.float32),
|
||
"SPEAKER_01": np.zeros(audio_length, dtype=np.float32)
|
||
}
|
||
masks["SPEAKER_00"][:mid_point] = 1.0
|
||
masks["SPEAKER_01"][mid_point:] = 1.0
|
||
return masks
|
||
|
||
def _create_split_masks(self, segments: List[Tuple[float, float]], split_point: int,
|
||
audio_length: int, sample_rate: int) -> Dict[str, np.ndarray]:
|
||
"""Create masks with split at specific point."""
|
||
masks = {
|
||
"SPEAKER_00": np.zeros(audio_length, dtype=np.float32),
|
||
"SPEAKER_01": np.zeros(audio_length, dtype=np.float32)
|
||
}
|
||
|
||
# Vectorized segment processing
|
||
for i, (start_time, end_time) in enumerate(segments):
|
||
start_sample = max(0, int(start_time * sample_rate))
|
||
end_sample = min(audio_length, int(end_time * sample_rate))
|
||
|
||
if start_sample < end_sample:
|
||
speaker_key = "SPEAKER_00" if i < split_point else "SPEAKER_01"
|
||
masks[speaker_key][start_sample:end_sample] = 1.0
|
||
|
||
return masks
|
||
|
||
def _create_alternating_masks(self, segments: List[Tuple[float, float]],
|
||
audio_length: int, sample_rate: int) -> Dict[str, np.ndarray]:
|
||
"""Create masks with alternating assignment."""
|
||
masks = {
|
||
"SPEAKER_00": np.zeros(audio_length, dtype=np.float32),
|
||
"SPEAKER_01": np.zeros(audio_length, dtype=np.float32)
|
||
}
|
||
|
||
for i, (start_time, end_time) in enumerate(segments):
|
||
start_sample = max(0, int(start_time * sample_rate))
|
||
end_sample = min(audio_length, int(end_time * sample_rate))
|
||
|
||
if start_sample < end_sample:
|
||
speaker_key = f"SPEAKER_0{i % 2}"
|
||
masks[speaker_key][start_sample:end_sample] = 1.0
|
||
|
||
return masks
|
||
|
||
def apply_optimized_background_preservation(self, masks: Dict[str, np.ndarray],
|
||
audio_length: int) -> Dict[str, np.ndarray]:
|
||
"""
|
||
Heavily optimized background preservation using pure vectorized operations.
|
||
"""
|
||
xprint("Applying optimized voice separation logic...")
|
||
|
||
# Ensure exactly 2 speakers
|
||
speaker_keys = self._get_top_speakers(masks, audio_length)
|
||
|
||
# Pre-allocate final masks
|
||
final_masks = {
|
||
speaker: np.zeros(audio_length, dtype=np.float32)
|
||
for speaker in speaker_keys
|
||
}
|
||
|
||
# Get active masks (vectorized)
|
||
active_0 = masks.get(speaker_keys[0], np.zeros(audio_length)) > 0.5
|
||
active_1 = masks.get(speaker_keys[1], np.zeros(audio_length)) > 0.5
|
||
|
||
# Vectorized mask assignment
|
||
both_active = active_0 & active_1
|
||
only_0 = active_0 & ~active_1
|
||
only_1 = ~active_0 & active_1
|
||
neither = ~active_0 & ~active_1
|
||
|
||
# Apply assignments (all vectorized)
|
||
final_masks[speaker_keys[0]][both_active] = 1.0
|
||
final_masks[speaker_keys[1]][both_active] = 1.0
|
||
|
||
final_masks[speaker_keys[0]][only_0] = 1.0
|
||
final_masks[speaker_keys[1]][only_0] = 0.0
|
||
|
||
final_masks[speaker_keys[0]][only_1] = 0.0
|
||
final_masks[speaker_keys[1]][only_1] = 1.0
|
||
|
||
# Handle ambiguous regions efficiently
|
||
if np.any(neither):
|
||
ambiguous_assignments = self._compute_ambiguous_assignments_vectorized(
|
||
masks, speaker_keys, neither, audio_length
|
||
)
|
||
|
||
# Apply ambiguous assignments
|
||
final_masks[speaker_keys[0]][neither] = (ambiguous_assignments == 0).astype(np.float32) * 0.5
|
||
final_masks[speaker_keys[1]][neither] = (ambiguous_assignments == 1).astype(np.float32) * 0.5
|
||
|
||
# xprint statistics (vectorized)
|
||
sample_rate = 16000 # Assume 16kHz for timing
|
||
xprint(f" Both speaking clearly: {np.sum(both_active)/sample_rate:.1f}s")
|
||
xprint(f" {speaker_keys[0]} only: {np.sum(only_0)/sample_rate:.1f}s")
|
||
xprint(f" {speaker_keys[1]} only: {np.sum(only_1)/sample_rate:.1f}s")
|
||
xprint(f" Ambiguous (assigned): {np.sum(neither)/sample_rate:.1f}s")
|
||
|
||
# Apply minimum duration smoothing to prevent rapid switching
|
||
final_masks = self._apply_minimum_duration_smoothing(final_masks, sample_rate)
|
||
|
||
return final_masks
|
||
|
||
def _get_top_speakers(self, masks: Dict[str, np.ndarray], audio_length: int) -> List[str]:
|
||
"""Get top 2 speakers by speaking time."""
|
||
speaker_keys = list(masks.keys())
|
||
|
||
if len(speaker_keys) > 2:
|
||
# Vectorized speaking time calculation
|
||
speaking_times = {k: np.sum(v) for k, v in masks.items()}
|
||
speaker_keys = sorted(speaking_times.keys(), key=lambda x: speaking_times[x], reverse=True)[:2]
|
||
xprint(f"Keeping top 2 speakers: {speaker_keys}")
|
||
elif len(speaker_keys) == 1:
|
||
speaker_keys.append("SPEAKER_SILENT")
|
||
|
||
return speaker_keys
|
||
|
||
def _compute_ambiguous_assignments_vectorized(self, masks: Dict[str, np.ndarray],
|
||
speaker_keys: List[str],
|
||
ambiguous_mask: np.ndarray,
|
||
audio_length: int) -> np.ndarray:
|
||
"""Compute speaker assignments for ambiguous regions using vectorized operations."""
|
||
ambiguous_indices = np.where(ambiguous_mask)[0]
|
||
|
||
if len(ambiguous_indices) == 0:
|
||
return np.array([])
|
||
|
||
# Get speaker segments efficiently
|
||
speaker_segments = {}
|
||
for speaker in speaker_keys:
|
||
if speaker in masks and speaker != "SPEAKER_SILENT":
|
||
mask = masks[speaker] > 0.5
|
||
# Find segments using vectorized operations
|
||
diff = np.diff(np.concatenate(([False], mask, [False])).astype(int))
|
||
starts = np.where(diff == 1)[0]
|
||
ends = np.where(diff == -1)[0]
|
||
speaker_segments[speaker] = np.column_stack([starts, ends])
|
||
else:
|
||
speaker_segments[speaker] = np.array([]).reshape(0, 2)
|
||
|
||
# Vectorized distance calculations
|
||
distances = {}
|
||
for speaker in speaker_keys:
|
||
segments = speaker_segments[speaker]
|
||
if len(segments) == 0:
|
||
distances[speaker] = np.full(len(ambiguous_indices), np.inf)
|
||
else:
|
||
# Compute distances to all segments at once
|
||
distances[speaker] = self._compute_distances_to_segments(ambiguous_indices, segments)
|
||
|
||
# Assign based on minimum distance with late-audio bias
|
||
assignments = self._assign_based_on_distance(
|
||
distances, speaker_keys, ambiguous_indices, audio_length
|
||
)
|
||
|
||
return assignments
|
||
|
||
def _apply_minimum_duration_smoothing(self, masks: Dict[str, np.ndarray],
|
||
sample_rate: int, min_duration_ms: int = 600) -> Dict[str, np.ndarray]:
|
||
"""
|
||
Apply minimum duration smoothing with STRICT timer enforcement.
|
||
Uses original both-speaking regions from diarization.
|
||
"""
|
||
xprint(f"Applying STRICT minimum duration smoothing ({min_duration_ms}ms)...")
|
||
|
||
min_samples = int(min_duration_ms * sample_rate / 1000)
|
||
speaker_keys = list(masks.keys())
|
||
|
||
if len(speaker_keys) != 2:
|
||
return masks
|
||
|
||
mask0 = masks[speaker_keys[0]]
|
||
mask1 = masks[speaker_keys[1]]
|
||
|
||
# Use original both-speaking regions from diarization
|
||
both_speaking_original = getattr(self, '_both_speaking_regions', np.zeros(len(mask0), dtype=bool))
|
||
|
||
# Identify regions based on original diarization info
|
||
ambiguous_original = (mask0 < 0.3) & (mask1 < 0.3) & ~both_speaking_original
|
||
|
||
# Clear dominance: one speaker higher, and not both-speaking or ambiguous
|
||
remaining_mask = ~both_speaking_original & ~ambiguous_original
|
||
speaker0_dominant = (mask0 > mask1) & remaining_mask
|
||
speaker1_dominant = (mask1 > mask0) & remaining_mask
|
||
|
||
# Create preference signal including both-speaking as valid state
|
||
# -1=ambiguous, 0=speaker0, 1=speaker1, 2=both_speaking
|
||
preference_signal = np.full(len(mask0), -1, dtype=int)
|
||
preference_signal[speaker0_dominant] = 0
|
||
preference_signal[speaker1_dominant] = 1
|
||
preference_signal[both_speaking_original] = 2
|
||
|
||
# STRICT state machine enforcement
|
||
smoothed_assignment = np.full(len(mask0), -1, dtype=int)
|
||
corrections = 0
|
||
|
||
# State variables
|
||
current_state = -1 # -1=unset, 0=speaker0, 1=speaker1, 2=both_speaking
|
||
samples_remaining = 0 # Samples remaining in current state's lock period
|
||
|
||
# Process each sample with STRICT enforcement
|
||
for i in range(len(preference_signal)):
|
||
preference = preference_signal[i]
|
||
|
||
# If we're in a lock period, enforce the current state
|
||
if samples_remaining > 0:
|
||
# Force current state regardless of preference
|
||
smoothed_assignment[i] = current_state
|
||
samples_remaining -= 1
|
||
|
||
# Count corrections if this differs from preference
|
||
if preference >= 0 and preference != current_state:
|
||
corrections += 1
|
||
|
||
else:
|
||
# Lock period expired - can consider new state
|
||
|
||
if preference >= 0:
|
||
# Clear preference available (including both-speaking)
|
||
if current_state != preference:
|
||
# Switch to new state and start new lock period
|
||
current_state = preference
|
||
samples_remaining = min_samples - 1 # -1 because we use this sample
|
||
|
||
smoothed_assignment[i] = current_state
|
||
|
||
else:
|
||
# Ambiguous preference
|
||
if current_state >= 0:
|
||
# Continue with current state if we have one
|
||
smoothed_assignment[i] = current_state
|
||
else:
|
||
# No current state and ambiguous - leave as ambiguous
|
||
smoothed_assignment[i] = -1
|
||
|
||
# Convert back to masks based on smoothed assignment
|
||
smoothed_masks = {}
|
||
|
||
for i, speaker in enumerate(speaker_keys):
|
||
new_mask = np.zeros_like(mask0)
|
||
|
||
# Assign regions where this speaker is dominant
|
||
speaker_regions = smoothed_assignment == i
|
||
new_mask[speaker_regions] = 1.0
|
||
|
||
# Assign both-speaking regions (state 2) to both speakers
|
||
both_speaking_regions = smoothed_assignment == 2
|
||
new_mask[both_speaking_regions] = 1.0
|
||
|
||
# Handle ambiguous regions that remain unassigned
|
||
unassigned_ambiguous = smoothed_assignment == -1
|
||
if np.any(unassigned_ambiguous):
|
||
# Use original ambiguous values only for truly unassigned regions
|
||
original_ambiguous_mask = ambiguous_original & unassigned_ambiguous
|
||
new_mask[original_ambiguous_mask] = masks[speaker][original_ambiguous_mask]
|
||
|
||
smoothed_masks[speaker] = new_mask
|
||
|
||
# Calculate and xprint statistics
|
||
both_speaking_time = np.sum(smoothed_assignment == 2) / sample_rate
|
||
speaker0_time = np.sum(smoothed_assignment == 0) / sample_rate
|
||
speaker1_time = np.sum(smoothed_assignment == 1) / sample_rate
|
||
ambiguous_time = np.sum(smoothed_assignment == -1) / sample_rate
|
||
|
||
xprint(f" Both speaking clearly: {both_speaking_time:.1f}s")
|
||
xprint(f" {speaker_keys[0]} only: {speaker0_time:.1f}s")
|
||
xprint(f" {speaker_keys[1]} only: {speaker1_time:.1f}s")
|
||
xprint(f" Ambiguous (assigned): {ambiguous_time:.1f}s")
|
||
xprint(f" Enforced minimum duration on {corrections} samples ({corrections/sample_rate:.2f}s)")
|
||
|
||
return smoothed_masks
|
||
|
||
def _compute_distances_to_segments(self, indices: np.ndarray, segments: np.ndarray) -> np.ndarray:
|
||
"""Compute minimum distances from indices to segments (vectorized)."""
|
||
if len(segments) == 0:
|
||
return np.full(len(indices), np.inf)
|
||
|
||
# Broadcast for vectorized computation
|
||
indices_expanded = indices[:, np.newaxis] # Shape: (n_indices, 1)
|
||
starts = segments[:, 0] # Shape: (n_segments,)
|
||
ends = segments[:, 1] # Shape: (n_segments,)
|
||
|
||
# Compute distances to all segments
|
||
dist_to_start = np.maximum(0, starts - indices_expanded) # Shape: (n_indices, n_segments)
|
||
dist_from_end = np.maximum(0, indices_expanded - ends) # Shape: (n_indices, n_segments)
|
||
|
||
# Minimum of distance to start or from end for each segment
|
||
distances = np.minimum(dist_to_start, dist_from_end)
|
||
|
||
# Return minimum distance to any segment for each index
|
||
return np.min(distances, axis=1)
|
||
|
||
def _assign_based_on_distance(self, distances: Dict[str, np.ndarray],
|
||
speaker_keys: List[str],
|
||
ambiguous_indices: np.ndarray,
|
||
audio_length: int) -> np.ndarray:
|
||
"""Assign speakers based on distance with late-audio bias."""
|
||
speaker_0_distances = distances[speaker_keys[0]]
|
||
speaker_1_distances = distances[speaker_keys[1]]
|
||
|
||
# Basic assignment by minimum distance
|
||
assignments = (speaker_1_distances < speaker_0_distances).astype(int)
|
||
|
||
# Apply late-audio bias (vectorized)
|
||
late_threshold = int(audio_length * 0.6)
|
||
late_indices = ambiguous_indices > late_threshold
|
||
|
||
if np.any(late_indices) and len(speaker_keys) > 1:
|
||
# Simple late-audio bias: prefer speaker 1 in later parts
|
||
assignments[late_indices] = 1
|
||
|
||
return assignments
|
||
|
||
def _save_outputs_optimized(self, waveform: torch.Tensor, masks: Dict[str, np.ndarray],
|
||
sample_rate: int, audio_path: str, output1, output2) -> Dict[str, str]:
|
||
"""Optimized output saving with parallel processing."""
|
||
output_paths = {}
|
||
|
||
def save_speaker_audio(speaker_mask_pair, output):
|
||
speaker, mask = speaker_mask_pair
|
||
# Convert mask to tensor efficiently
|
||
mask_tensor = torch.from_numpy(mask).unsqueeze(0)
|
||
|
||
# Apply mask
|
||
masked_audio = waveform * mask_tensor
|
||
|
||
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
torchaudio.save(output, masked_audio, sample_rate)
|
||
|
||
xprint(f"✓ Saved {speaker}: {output}")
|
||
return speaker, output
|
||
|
||
# Use ThreadPoolExecutor for parallel saving
|
||
with ThreadPoolExecutor(max_workers=2) as executor:
|
||
results = list(executor.map(save_speaker_audio, masks.items(), [output1, output2]))
|
||
|
||
output_paths = dict(results)
|
||
return output_paths
|
||
|
||
def print_summary(self, audio_path: str):
|
||
"""xprint diarization summary."""
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings("ignore", category=UserWarning)
|
||
diarization = self.perform_optimized_diarization(audio_path)
|
||
|
||
xprint("\n=== Diarization Summary ===")
|
||
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
||
xprint(f"{speaker}: {turn.start:.1f}s - {turn.end:.1f}s")
|
||
|
||
def extract_dual_audio(audio, output1, output2, verbose = False):
|
||
global verbose_output
|
||
verbose_output = verbose
|
||
separator = OptimizedPyannote31SpeakerSeparator(
|
||
None,
|
||
None,
|
||
vad_onset=0.2,
|
||
vad_offset=0.8
|
||
)
|
||
# Separate audio
|
||
import time
|
||
start_time = time.time()
|
||
|
||
outputs = separator.separate_audio(audio, output1, output2)
|
||
|
||
elapsed_time = time.time() - start_time
|
||
xprint(f"\n=== SUCCESS (completed in {elapsed_time:.2f}s) ===")
|
||
for speaker, path in outputs.items():
|
||
xprint(f"{speaker}: {path}")
|
||
|
||
def main():
|
||
|
||
parser = argparse.ArgumentParser(description="Optimized Pyannote 3.1 Speaker Separator")
|
||
parser.add_argument("--audio", required=True, help="Input audio file")
|
||
parser.add_argument("--output", required=True, help="Output directory")
|
||
parser.add_argument("--token", help="Hugging Face token")
|
||
parser.add_argument("--local-model", help="Path to local 3.1 model")
|
||
parser.add_argument("--summary", action="store_true", help="xprint summary")
|
||
|
||
# VAD sensitivity parameters
|
||
parser.add_argument("--vad-onset", type=float, default=0.2,
|
||
help="VAD onset threshold (lower = more sensitive to speech start, default: 0.2)")
|
||
parser.add_argument("--vad-offset", type=float, default=0.8,
|
||
help="VAD offset threshold (higher = keeps speech longer, default: 0.8)")
|
||
|
||
args = parser.parse_args()
|
||
|
||
xprint("=== Optimized Pyannote 3.1 Speaker Separator ===")
|
||
xprint("Performance optimizations: vectorized operations, memory management, parallel processing")
|
||
xprint(f"Audio: {args.audio}")
|
||
xprint(f"Output: {args.output}")
|
||
xprint(f"VAD onset: {args.vad_onset}")
|
||
xprint(f"VAD offset: {args.vad_offset}")
|
||
xprint()
|
||
|
||
if not os.path.exists(args.audio):
|
||
xprint(f"ERROR: Audio file not found: {args.audio}")
|
||
return
|
||
|
||
try:
|
||
# Initialize with VAD parameters
|
||
separator = OptimizedPyannote31SpeakerSeparator(
|
||
args.token,
|
||
args.local_model,
|
||
vad_onset=args.vad_onset,
|
||
vad_offset=args.vad_offset
|
||
)
|
||
|
||
# print summary if requested
|
||
if args.summary:
|
||
separator.print_summary(args.audio)
|
||
|
||
# Separate audio
|
||
import time
|
||
start_time = time.time()
|
||
|
||
audio_name = Path(args.audio).stem
|
||
output_filename = f"{audio_name}_speaker0.wav"
|
||
output_filename1 = f"{audio_name}_speaker1.wav"
|
||
output_path = os.path.join(args.output, output_filename)
|
||
output_path1 = os.path.join(args.output, output_filename1)
|
||
|
||
outputs = separator.separate_audio(args.audio, output_path, output_path1)
|
||
|
||
elapsed_time = time.time() - start_time
|
||
xprint(f"\n=== SUCCESS (completed in {elapsed_time:.2f}s) ===")
|
||
for speaker, path in outputs.items():
|
||
xprint(f"{speaker}: {path}")
|
||
|
||
except Exception as e:
|
||
xprint(f"ERROR: {e}")
|
||
return 1
|
||
|
||
|
||
if __name__ == "__main__":
|
||
exit(main()) |