mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			80 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) Meta Platforms, Inc. and affiliates.
 | 
						|
# All rights reserved.
 | 
						|
#
 | 
						|
# This source code is licensed under the license found in the
 | 
						|
# LICENSE file in the root directory of this source tree.
 | 
						|
 | 
						|
# References:
 | 
						|
#   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
 | 
						|
#   https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
 | 
						|
 | 
						|
import logging
 | 
						|
 | 
						|
from torch import Tensor
 | 
						|
from torch import nn
 | 
						|
 | 
						|
logger = logging.getLogger("dinov2")
 | 
						|
 | 
						|
try:
 | 
						|
    from xformers.ops import memory_efficient_attention, unbind, fmha
 | 
						|
 | 
						|
    XFORMERS_AVAILABLE = True
 | 
						|
except ImportError:
 | 
						|
    logger.warning("xFormers not available")
 | 
						|
    XFORMERS_AVAILABLE = False
 | 
						|
 | 
						|
 | 
						|
class Attention(nn.Module):
 | 
						|
    def __init__(
 | 
						|
            self,
 | 
						|
            dim: int,
 | 
						|
            num_heads: int = 8,
 | 
						|
            qkv_bias: bool = False,
 | 
						|
            proj_bias: bool = True,
 | 
						|
            attn_drop: float = 0.0,
 | 
						|
            proj_drop: float = 0.0,
 | 
						|
    ) -> None:
 | 
						|
        super().__init__()
 | 
						|
        self.num_heads = num_heads
 | 
						|
        head_dim = dim // num_heads
 | 
						|
        self.scale = head_dim ** -0.5
 | 
						|
 | 
						|
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
 | 
						|
        self.attn_drop = nn.Dropout(attn_drop)
 | 
						|
        self.proj = nn.Linear(dim, dim, bias=proj_bias)
 | 
						|
        self.proj_drop = nn.Dropout(proj_drop)
 | 
						|
 | 
						|
    def forward(self, x: Tensor) -> Tensor:
 | 
						|
        B, N, C = x.shape
 | 
						|
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
 | 
						|
 | 
						|
        q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
 | 
						|
        attn = q @ k.transpose(-2, -1)
 | 
						|
 | 
						|
        attn = attn.softmax(dim=-1)
 | 
						|
        attn = self.attn_drop(attn)
 | 
						|
 | 
						|
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
 | 
						|
        x = self.proj(x)
 | 
						|
        x = self.proj_drop(x)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class MemEffAttention(Attention):
 | 
						|
    def forward(self, x: Tensor, attn_bias=None) -> Tensor:
 | 
						|
        if not XFORMERS_AVAILABLE:
 | 
						|
            assert attn_bias is None, "xFormers is required for nested tensors usage"
 | 
						|
            return super().forward(x)
 | 
						|
 | 
						|
        B, N, C = x.shape
 | 
						|
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
 | 
						|
 | 
						|
        q, k, v = unbind(qkv, 2)
 | 
						|
 | 
						|
        x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
 | 
						|
        x = x.reshape([B, N, C])
 | 
						|
 | 
						|
        x = self.proj(x)
 | 
						|
        x = self.proj_drop(x)
 | 
						|
        return x
 |