mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			160 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import cv2
 | 
						|
import numpy as np
 | 
						|
 | 
						|
 | 
						|
class Resize(object):
 | 
						|
    """Resize sample to given size (width, height).
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
            self,
 | 
						|
            width,
 | 
						|
            height,
 | 
						|
            resize_target=True,
 | 
						|
            keep_aspect_ratio=False,
 | 
						|
            ensure_multiple_of=1,
 | 
						|
            resize_method="lower_bound",
 | 
						|
            image_interpolation_method=cv2.INTER_AREA,
 | 
						|
    ):
 | 
						|
        """Init.
 | 
						|
 | 
						|
        Args:
 | 
						|
            width (int): desired output width
 | 
						|
            height (int): desired output height
 | 
						|
            resize_target (bool, optional):
 | 
						|
                True: Resize the full sample (image, mask, target).
 | 
						|
                False: Resize image only.
 | 
						|
                Defaults to True.
 | 
						|
            keep_aspect_ratio (bool, optional):
 | 
						|
                True: Keep the aspect ratio of the input sample.
 | 
						|
                Output sample might not have the given width and height, and
 | 
						|
                resize behaviour depends on the parameter 'resize_method'.
 | 
						|
                Defaults to False.
 | 
						|
            ensure_multiple_of (int, optional):
 | 
						|
                Output width and height is constrained to be multiple of this parameter.
 | 
						|
                Defaults to 1.
 | 
						|
            resize_method (str, optional):
 | 
						|
                "lower_bound": Output will be at least as large as the given size.
 | 
						|
                "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
 | 
						|
                "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
 | 
						|
                Defaults to "lower_bound".
 | 
						|
        """
 | 
						|
        self.__width = width
 | 
						|
        self.__height = height
 | 
						|
 | 
						|
        self.__resize_target = resize_target
 | 
						|
        self.__keep_aspect_ratio = keep_aspect_ratio
 | 
						|
        self.__multiple_of = ensure_multiple_of
 | 
						|
        self.__resize_method = resize_method
 | 
						|
        self.__image_interpolation_method = image_interpolation_method
 | 
						|
 | 
						|
    def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
 | 
						|
        y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
 | 
						|
 | 
						|
        if max_val is not None and y > max_val:
 | 
						|
            y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
 | 
						|
 | 
						|
        if y < min_val:
 | 
						|
            y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
 | 
						|
 | 
						|
        return y
 | 
						|
 | 
						|
    def get_size(self, width, height):
 | 
						|
        # determine new height and width
 | 
						|
        scale_height = self.__height / height
 | 
						|
        scale_width = self.__width / width
 | 
						|
 | 
						|
        if self.__keep_aspect_ratio:
 | 
						|
            if self.__resize_method == "lower_bound":
 | 
						|
                # scale such that output size is lower bound
 | 
						|
                if scale_width > scale_height:
 | 
						|
                    # fit width
 | 
						|
                    scale_height = scale_width
 | 
						|
                else:
 | 
						|
                    # fit height
 | 
						|
                    scale_width = scale_height
 | 
						|
            elif self.__resize_method == "upper_bound":
 | 
						|
                # scale such that output size is upper bound
 | 
						|
                if scale_width < scale_height:
 | 
						|
                    # fit width
 | 
						|
                    scale_height = scale_width
 | 
						|
                else:
 | 
						|
                    # fit height
 | 
						|
                    scale_width = scale_height
 | 
						|
            elif self.__resize_method == "minimal":
 | 
						|
                # scale as least as possbile
 | 
						|
                if abs(1 - scale_width) < abs(1 - scale_height):
 | 
						|
                    # fit width
 | 
						|
                    scale_height = scale_width
 | 
						|
                else:
 | 
						|
                    # fit height
 | 
						|
                    scale_width = scale_height
 | 
						|
            else:
 | 
						|
                raise ValueError(f"resize_method {self.__resize_method} not implemented")
 | 
						|
 | 
						|
        if self.__resize_method == "lower_bound":
 | 
						|
            new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
 | 
						|
            new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
 | 
						|
        elif self.__resize_method == "upper_bound":
 | 
						|
            new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
 | 
						|
            new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
 | 
						|
        elif self.__resize_method == "minimal":
 | 
						|
            new_height = self.constrain_to_multiple_of(scale_height * height)
 | 
						|
            new_width = self.constrain_to_multiple_of(scale_width * width)
 | 
						|
        else:
 | 
						|
            raise ValueError(f"resize_method {self.__resize_method} not implemented")
 | 
						|
 | 
						|
        return (new_width, new_height)
 | 
						|
 | 
						|
    def __call__(self, sample):
 | 
						|
        width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
 | 
						|
 | 
						|
        # resize sample
 | 
						|
        sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method)
 | 
						|
 | 
						|
        if self.__resize_target:
 | 
						|
            if "depth" in sample:
 | 
						|
                sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
 | 
						|
 | 
						|
            if "mask" in sample:
 | 
						|
                sample["mask"] = cv2.resize(sample["mask"].astype(np.float32), (width, height),
 | 
						|
                                            interpolation=cv2.INTER_NEAREST)
 | 
						|
 | 
						|
        return sample
 | 
						|
 | 
						|
 | 
						|
class NormalizeImage(object):
 | 
						|
    """Normlize image by given mean and std.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, mean, std):
 | 
						|
        self.__mean = mean
 | 
						|
        self.__std = std
 | 
						|
 | 
						|
    def __call__(self, sample):
 | 
						|
        sample["image"] = (sample["image"] - self.__mean) / self.__std
 | 
						|
 | 
						|
        return sample
 | 
						|
 | 
						|
 | 
						|
class PrepareForNet(object):
 | 
						|
    """Prepare sample for usage as network input.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    def __call__(self, sample):
 | 
						|
        image = np.transpose(sample["image"], (2, 0, 1))
 | 
						|
        sample["image"] = np.ascontiguousarray(image).astype(np.float32)
 | 
						|
 | 
						|
        if "depth" in sample:
 | 
						|
            depth = sample["depth"].astype(np.float32)
 | 
						|
            sample["depth"] = np.ascontiguousarray(depth)
 | 
						|
 | 
						|
        if "mask" in sample:
 | 
						|
            sample["mask"] = sample["mask"].astype(np.float32)
 | 
						|
            sample["mask"] = np.ascontiguousarray(sample["mask"])
 | 
						|
 | 
						|
        return sample
 |