mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			698 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			698 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						||
import gc
 | 
						||
import logging
 | 
						||
import math
 | 
						||
import os
 | 
						||
import random
 | 
						||
import sys
 | 
						||
import types
 | 
						||
from contextlib import contextmanager
 | 
						||
from functools import partial
 | 
						||
from mmgp import offload
 | 
						||
import torch
 | 
						||
import torch.nn as nn
 | 
						||
import torch.cuda.amp as amp
 | 
						||
import torch.distributed as dist
 | 
						||
from tqdm import tqdm
 | 
						||
from PIL import Image
 | 
						||
import torchvision.transforms.functional as TF
 | 
						||
import torch.nn.functional as F
 | 
						||
from .distributed.fsdp import shard_model
 | 
						||
from .modules.model import WanModel
 | 
						||
from .modules.t5 import T5EncoderModel
 | 
						||
from .modules.vae import WanVAE
 | 
						||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
						||
                               get_sampling_sigmas, retrieve_timesteps)
 | 
						||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
						||
from wan.modules.posemb_layers import get_rotary_pos_embed
 | 
						||
from .utils.vace_preprocessor import VaceVideoProcessor
 | 
						||
 | 
						||
 | 
						||
def optimized_scale(positive_flat, negative_flat):
 | 
						||
 | 
						||
    # Calculate dot production
 | 
						||
    dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
 | 
						||
 | 
						||
    # Squared norm of uncondition
 | 
						||
    squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
 | 
						||
 | 
						||
    # st_star = v_cond^T * v_uncond / ||v_uncond||^2
 | 
						||
    st_star = dot_product / squared_norm
 | 
						||
    
 | 
						||
    return st_star
 | 
						||
    
 | 
						||
 | 
						||
class WanT2V:
 | 
						||
 | 
						||
    def __init__(
 | 
						||
        self,
 | 
						||
        config,
 | 
						||
        checkpoint_dir,
 | 
						||
        rank=0,
 | 
						||
        model_filename = None,
 | 
						||
        text_encoder_filename = None,
 | 
						||
        quantizeTransformer = False,
 | 
						||
        dtype = torch.bfloat16
 | 
						||
    ):
 | 
						||
        self.device = torch.device(f"cuda")
 | 
						||
        self.config = config
 | 
						||
        self.rank = rank
 | 
						||
        self.dtype = dtype
 | 
						||
        self.num_train_timesteps = config.num_train_timesteps
 | 
						||
        self.param_dtype = config.param_dtype
 | 
						||
 | 
						||
        self.text_encoder = T5EncoderModel(
 | 
						||
            text_len=config.text_len,
 | 
						||
            dtype=config.t5_dtype,
 | 
						||
            device=torch.device('cpu'),
 | 
						||
            checkpoint_path=text_encoder_filename,
 | 
						||
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
						||
            shard_fn= None)
 | 
						||
 | 
						||
        self.vae_stride = config.vae_stride
 | 
						||
        self.patch_size = config.patch_size 
 | 
						||
 | 
						||
        
 | 
						||
        self.vae = WanVAE(
 | 
						||
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
 | 
						||
            device=self.device)
 | 
						||
 | 
						||
        logging.info(f"Creating WanModel from {model_filename}")
 | 
						||
        from mmgp import offload
 | 
						||
 | 
						||
        self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False)
 | 
						||
        # offload.load_model_data(self.model, "recam.ckpt")
 | 
						||
        # self.model.cpu()
 | 
						||
        # offload.save_model(self.model, "recam.safetensors")
 | 
						||
        if self.dtype == torch.float16 and not "fp16" in model_filename:
 | 
						||
            self.model.to(self.dtype) 
 | 
						||
        # offload.save_model(self.model, "t2v_fp16.safetensors",do_quantize=True)
 | 
						||
        if self.dtype == torch.float16:
 | 
						||
            self.vae.model.to(self.dtype)
 | 
						||
        self.model.eval().requires_grad_(False)
 | 
						||
 | 
						||
 | 
						||
        self.sample_neg_prompt = config.sample_neg_prompt
 | 
						||
 | 
						||
        if "Vace" in model_filename:
 | 
						||
            self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
 | 
						||
                                            min_area=480*832,
 | 
						||
                                            max_area=480*832,
 | 
						||
                                            min_fps=config.sample_fps,
 | 
						||
                                            max_fps=config.sample_fps,
 | 
						||
                                            zero_start=True,
 | 
						||
                                            seq_len=32760,
 | 
						||
                                            keep_last=True)
 | 
						||
 | 
						||
            self.adapt_vace_model()
 | 
						||
 | 
						||
        self.scheduler = FlowUniPCMultistepScheduler()
 | 
						||
 | 
						||
    def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0):
 | 
						||
        if ref_images is None:
 | 
						||
            ref_images = [None] * len(frames)
 | 
						||
        else:
 | 
						||
            assert len(frames) == len(ref_images)
 | 
						||
 | 
						||
        if masks is None:
 | 
						||
            latents = self.vae.encode(frames, tile_size = tile_size)
 | 
						||
        else:
 | 
						||
            inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
 | 
						||
            reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
 | 
						||
            inactive = self.vae.encode(inactive, tile_size = tile_size)
 | 
						||
            reactive = self.vae.encode(reactive, tile_size = tile_size)
 | 
						||
            latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
 | 
						||
 | 
						||
        cat_latents = []
 | 
						||
        for latent, refs in zip(latents, ref_images):
 | 
						||
            if refs is not None:
 | 
						||
                if masks is None:
 | 
						||
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
 | 
						||
                else:
 | 
						||
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
 | 
						||
                    ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
 | 
						||
                assert all([x.shape[1] == 1 for x in ref_latent])
 | 
						||
                latent = torch.cat([*ref_latent, latent], dim=1)
 | 
						||
            cat_latents.append(latent)
 | 
						||
        return cat_latents
 | 
						||
 | 
						||
    def vace_encode_masks(self, masks, ref_images=None):
 | 
						||
        if ref_images is None:
 | 
						||
            ref_images = [None] * len(masks)
 | 
						||
        else:
 | 
						||
            assert len(masks) == len(ref_images)
 | 
						||
 | 
						||
        result_masks = []
 | 
						||
        for mask, refs in zip(masks, ref_images):
 | 
						||
            c, depth, height, width = mask.shape
 | 
						||
            new_depth = int((depth + 3) // self.vae_stride[0])
 | 
						||
            height = 2 * (int(height) // (self.vae_stride[1] * 2))
 | 
						||
            width = 2 * (int(width) // (self.vae_stride[2] * 2))
 | 
						||
 | 
						||
            # reshape
 | 
						||
            mask = mask[0, :, :, :]
 | 
						||
            mask = mask.view(
 | 
						||
                depth, height, self.vae_stride[1], width, self.vae_stride[1]
 | 
						||
            )  # depth, height, 8, width, 8
 | 
						||
            mask = mask.permute(2, 4, 0, 1, 3)  # 8, 8, depth, height, width
 | 
						||
            mask = mask.reshape(
 | 
						||
                self.vae_stride[1] * self.vae_stride[2], depth, height, width
 | 
						||
            )  # 8*8, depth, height, width
 | 
						||
 | 
						||
            # interpolation
 | 
						||
            mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
 | 
						||
 | 
						||
            if refs is not None:
 | 
						||
                length = len(refs)
 | 
						||
                mask_pad = torch.zeros_like(mask[:, :length, :, :])
 | 
						||
                mask = torch.cat((mask_pad, mask), dim=1)
 | 
						||
            result_masks.append(mask)
 | 
						||
        return result_masks
 | 
						||
 | 
						||
    def vace_latent(self, z, m):
 | 
						||
        return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
 | 
						||
 | 
						||
    def prepare_source(self, src_video, src_mask, src_ref_images, total_frames, image_size,  device, original_video = False, keep_frames= [], start_frame = 0, pre_src_video = None):
 | 
						||
        image_sizes = []
 | 
						||
        trim_video = len(keep_frames)
 | 
						||
 | 
						||
        for i, (sub_src_video, sub_src_mask, sub_pre_src_video) in enumerate(zip(src_video, src_mask,pre_src_video)):
 | 
						||
            prepend_count = 0 if sub_pre_src_video == None else sub_pre_src_video.shape[1]
 | 
						||
            num_frames = total_frames - prepend_count 
 | 
						||
            if sub_src_mask is not None and sub_src_video is not None:
 | 
						||
                src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame)
 | 
						||
                # src_video is [-1, 1], 0 = inpainting area (in fact 127  in [0, 255])
 | 
						||
                # src_mask is [-1, 1], 0 = preserve original video (in fact 127  in [0, 255]) and 1 = Inpainting (in fact 255  in [0, 255])
 | 
						||
                src_video[i] = src_video[i].to(device)
 | 
						||
                src_mask[i] = src_mask[i].to(device)
 | 
						||
                if prepend_count > 0:
 | 
						||
                    src_video[i] =  torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
 | 
						||
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1)
 | 
						||
                src_video_shape = src_video[i].shape
 | 
						||
                if src_video_shape[1] != total_frames:
 | 
						||
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						||
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						||
                src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
 | 
						||
                image_sizes.append(src_video[i].shape[2:])
 | 
						||
            elif sub_src_video is None:
 | 
						||
                if prepend_count > 0:
 | 
						||
                    src_video[i] =  torch.cat( [sub_pre_src_video, torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)], dim=1)
 | 
						||
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), torch.ones((3, num_frames, image_size[0], image_size[1]), device=device)] ,1)
 | 
						||
                else:
 | 
						||
                    src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
 | 
						||
                    src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
						||
                image_sizes.append(image_size)
 | 
						||
            else:
 | 
						||
                src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame)
 | 
						||
                src_video[i] = src_video[i].to(device)
 | 
						||
                src_mask[i] = torch.zeros_like(src_video[i], device=device) if original_video else torch.ones_like(src_video[i], device=device)
 | 
						||
                if prepend_count > 0:
 | 
						||
                    src_video[i] =  torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
 | 
						||
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1)
 | 
						||
                src_video_shape = src_video[i].shape
 | 
						||
                if src_video_shape[1] != total_frames:
 | 
						||
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						||
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						||
                image_sizes.append(src_video[i].shape[2:])
 | 
						||
            for k, keep in enumerate(keep_frames):
 | 
						||
                if not keep:
 | 
						||
                    src_video[i][:, k:k+1] = 0
 | 
						||
                    src_mask[i][:, k:k+1] = 1
 | 
						||
 | 
						||
        for i, ref_images in enumerate(src_ref_images):
 | 
						||
            if ref_images is not None:
 | 
						||
                image_size = image_sizes[i]
 | 
						||
                for j, ref_img in enumerate(ref_images):
 | 
						||
                    if ref_img is not None:
 | 
						||
                        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
 | 
						||
                        if ref_img.shape[-2:] != image_size:
 | 
						||
                            canvas_height, canvas_width = image_size
 | 
						||
                            ref_height, ref_width = ref_img.shape[-2:]
 | 
						||
                            white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
 | 
						||
                            scale = min(canvas_height / ref_height, canvas_width / ref_width)
 | 
						||
                            new_height = int(ref_height * scale)
 | 
						||
                            new_width = int(ref_width * scale)
 | 
						||
                            resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
 | 
						||
                            top = (canvas_height - new_height) // 2
 | 
						||
                            left = (canvas_width - new_width) // 2
 | 
						||
                            white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
 | 
						||
                            ref_img = white_canvas
 | 
						||
                        src_ref_images[i][j] = ref_img.to(device)
 | 
						||
        return src_video, src_mask, src_ref_images
 | 
						||
 | 
						||
    def decode_latent(self, zs, ref_images=None, tile_size= 0 ):
 | 
						||
        if ref_images is None:
 | 
						||
            ref_images = [None] * len(zs)
 | 
						||
        else:
 | 
						||
            assert len(zs) == len(ref_images)
 | 
						||
 | 
						||
        trimed_zs = []
 | 
						||
        for z, refs in zip(zs, ref_images):
 | 
						||
            if refs is not None:
 | 
						||
                z = z[:, len(refs):, :, :]
 | 
						||
            trimed_zs.append(z)
 | 
						||
 | 
						||
        return self.vae.decode(trimed_zs, tile_size= tile_size)
 | 
						||
 | 
						||
    def generate_timestep_matrix(
 | 
						||
        self,
 | 
						||
        num_frames,
 | 
						||
        step_template,
 | 
						||
        base_num_frames,
 | 
						||
        ar_step=5,
 | 
						||
        num_pre_ready=0,
 | 
						||
        casual_block_size=1,
 | 
						||
        shrink_interval_with_mask=False,
 | 
						||
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
 | 
						||
        step_matrix, step_index = [], []
 | 
						||
        update_mask, valid_interval = [], []
 | 
						||
        num_iterations = len(step_template) + 1
 | 
						||
        num_frames_block = num_frames // casual_block_size
 | 
						||
        base_num_frames_block = base_num_frames // casual_block_size
 | 
						||
        if base_num_frames_block < num_frames_block:
 | 
						||
            infer_step_num = len(step_template)
 | 
						||
            gen_block = base_num_frames_block
 | 
						||
            min_ar_step = infer_step_num / gen_block
 | 
						||
            assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
 | 
						||
        # print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
 | 
						||
        step_template = torch.cat(
 | 
						||
            [
 | 
						||
                torch.tensor([999], dtype=torch.int64, device=step_template.device),
 | 
						||
                step_template.long(),
 | 
						||
                torch.tensor([0], dtype=torch.int64, device=step_template.device),
 | 
						||
            ]
 | 
						||
        )  # to handle the counter in row works starting from 1
 | 
						||
        pre_row = torch.zeros(num_frames_block, dtype=torch.long)
 | 
						||
        if num_pre_ready > 0:
 | 
						||
            pre_row[: num_pre_ready // casual_block_size] = num_iterations
 | 
						||
 | 
						||
        while torch.all(pre_row >= (num_iterations - 1)) == False:
 | 
						||
            new_row = torch.zeros(num_frames_block, dtype=torch.long)
 | 
						||
            for i in range(num_frames_block):
 | 
						||
                if i == 0 or pre_row[i - 1] >= (
 | 
						||
                    num_iterations - 1
 | 
						||
                ):  # the first frame or the last frame is completely denoised
 | 
						||
                    new_row[i] = pre_row[i] + 1
 | 
						||
                else:
 | 
						||
                    new_row[i] = new_row[i - 1] - ar_step
 | 
						||
            new_row = new_row.clamp(0, num_iterations)
 | 
						||
 | 
						||
            update_mask.append(
 | 
						||
                (new_row != pre_row) & (new_row != num_iterations)
 | 
						||
            )  # False: no need to update, True: need to update
 | 
						||
            step_index.append(new_row)
 | 
						||
            step_matrix.append(step_template[new_row])
 | 
						||
            pre_row = new_row
 | 
						||
 | 
						||
        # for long video we split into several sequences, base_num_frames is set to the model max length (for training)
 | 
						||
        terminal_flag = base_num_frames_block
 | 
						||
        if shrink_interval_with_mask:
 | 
						||
            idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
 | 
						||
            update_mask = update_mask[0]
 | 
						||
            update_mask_idx = idx_sequence[update_mask]
 | 
						||
            last_update_idx = update_mask_idx[-1].item()
 | 
						||
            terminal_flag = last_update_idx + 1
 | 
						||
        # for i in range(0, len(update_mask)):
 | 
						||
        for curr_mask in update_mask:
 | 
						||
            if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
 | 
						||
                terminal_flag += 1
 | 
						||
            valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
 | 
						||
 | 
						||
        step_update_mask = torch.stack(update_mask, dim=0)
 | 
						||
        step_index = torch.stack(step_index, dim=0)
 | 
						||
        step_matrix = torch.stack(step_matrix, dim=0)
 | 
						||
 | 
						||
        if casual_block_size > 1:
 | 
						||
            step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
						||
            step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
						||
            step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
						||
            valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
 | 
						||
 | 
						||
        return step_matrix, step_index, step_update_mask, valid_interval
 | 
						||
    
 | 
						||
    def generate(self,
 | 
						||
                input_prompt,
 | 
						||
                input_frames= None,
 | 
						||
                input_masks = None,
 | 
						||
                input_ref_images = None,      
 | 
						||
                source_video=None,
 | 
						||
                target_camera=None,                  
 | 
						||
                context_scale=1.0,
 | 
						||
                size=(1280, 720),
 | 
						||
                frame_num=81,
 | 
						||
                shift=5.0,
 | 
						||
                sample_solver='unipc',
 | 
						||
                sampling_steps=50,
 | 
						||
                guide_scale=5.0,
 | 
						||
                n_prompt="",
 | 
						||
                seed=-1,
 | 
						||
                offload_model=True,
 | 
						||
                callback = None,
 | 
						||
                enable_RIFLEx = None,
 | 
						||
                VAE_tile_size = 0,
 | 
						||
                joint_pass = False,
 | 
						||
                slg_layers = None,
 | 
						||
                slg_start = 0.0,
 | 
						||
                slg_end = 1.0,
 | 
						||
                cfg_star_switch = True,
 | 
						||
                cfg_zero_step = 5,
 | 
						||
                 ):
 | 
						||
        r"""
 | 
						||
        Generates video frames from text prompt using diffusion process.
 | 
						||
 | 
						||
        Args:
 | 
						||
            input_prompt (`str`):
 | 
						||
                Text prompt for content generation
 | 
						||
            size (tupele[`int`], *optional*, defaults to (1280,720)):
 | 
						||
                Controls video resolution, (width,height).
 | 
						||
            frame_num (`int`, *optional*, defaults to 81):
 | 
						||
                How many frames to sample from a video. The number should be 4n+1
 | 
						||
            shift (`float`, *optional*, defaults to 5.0):
 | 
						||
                Noise schedule shift parameter. Affects temporal dynamics
 | 
						||
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
						||
                Solver used to sample the video.
 | 
						||
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
						||
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
						||
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
						||
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
						||
            n_prompt (`str`, *optional*, defaults to ""):
 | 
						||
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
						||
            seed (`int`, *optional*, defaults to -1):
 | 
						||
                Random seed for noise generation. If -1, use random seed.
 | 
						||
            offload_model (`bool`, *optional*, defaults to True):
 | 
						||
                If True, offloads models to CPU during generation to save VRAM
 | 
						||
 | 
						||
        Returns:
 | 
						||
            torch.Tensor:
 | 
						||
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
						||
                - C: Color channels (3 for RGB)
 | 
						||
                - N: Number of frames (81)
 | 
						||
                - H: Frame height (from size)
 | 
						||
                - W: Frame width from size)
 | 
						||
        """
 | 
						||
        # preprocess
 | 
						||
 | 
						||
        if n_prompt == "":
 | 
						||
            n_prompt = self.sample_neg_prompt
 | 
						||
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
						||
        seed_g = torch.Generator(device=self.device)
 | 
						||
        seed_g.manual_seed(seed)
 | 
						||
 | 
						||
        frame_num = max(17, frame_num) # must match causal_block_size for value of 5
 | 
						||
        frame_num = int( round( (frame_num - 17) / 20)* 20 + 17 )
 | 
						||
        num_frames = frame_num
 | 
						||
        addnoise_condition = 20
 | 
						||
        causal_attention = True
 | 
						||
        fps = 16
 | 
						||
        ar_step = 5
 | 
						||
 | 
						||
 | 
						||
 | 
						||
        context = self.text_encoder([input_prompt], self.device)
 | 
						||
        context_null = self.text_encoder([n_prompt], self.device)
 | 
						||
        if target_camera != None:
 | 
						||
            size = (source_video.shape[2], source_video.shape[1])
 | 
						||
            source_video = source_video.to(dtype=self.dtype , device=self.device)
 | 
						||
            source_video = source_video.permute(3, 0, 1, 2).div_(127.5).sub_(1.)            
 | 
						||
            source_latents = self.vae.encode([source_video]) #.to(dtype=self.dtype, device=self.device)
 | 
						||
            del source_video
 | 
						||
            # Process target camera (recammaster)
 | 
						||
            from wan.utils.cammmaster_tools import get_camera_embedding
 | 
						||
            cam_emb = get_camera_embedding(target_camera)       
 | 
						||
            cam_emb = cam_emb.to(dtype=self.dtype, device=self.device)
 | 
						||
 | 
						||
        if input_frames != None:
 | 
						||
            # vace context encode
 | 
						||
            input_frames = [u.to(self.device) for u in input_frames]
 | 
						||
            input_ref_images = [ None if u == None else [v.to(self.device) for v in u]  for u in input_ref_images]
 | 
						||
            input_masks = [u.to(self.device) for u in input_masks]
 | 
						||
 | 
						||
            z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size)
 | 
						||
            m0 = self.vace_encode_masks(input_masks, input_ref_images)
 | 
						||
            z = self.vace_latent(z0, m0)
 | 
						||
 | 
						||
            target_shape = list(z0[0].shape)
 | 
						||
            target_shape[0] = int(target_shape[0] / 2)
 | 
						||
        else:
 | 
						||
            F = frame_num
 | 
						||
            target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
 | 
						||
                            size[1] // self.vae_stride[1],
 | 
						||
                            size[0] // self.vae_stride[2])
 | 
						||
 | 
						||
        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
						||
                            (self.patch_size[1] * self.patch_size[2]) *
 | 
						||
                            target_shape[1]) 
 | 
						||
 | 
						||
        context  = [u.to(self.dtype) for u in context]
 | 
						||
        context_null  = [u.to(self.dtype) for u in context_null]
 | 
						||
 | 
						||
        noise = [ torch.randn( *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) ]
 | 
						||
 | 
						||
        # evaluation mode
 | 
						||
 | 
						||
        # if sample_solver == 'unipc':
 | 
						||
        #     sample_scheduler = FlowUniPCMultistepScheduler(
 | 
						||
        #         num_train_timesteps=self.num_train_timesteps,
 | 
						||
        #         shift=1,
 | 
						||
        #         use_dynamic_shifting=False)
 | 
						||
        #     sample_scheduler.set_timesteps(
 | 
						||
        #         sampling_steps, device=self.device, shift=shift)
 | 
						||
        #     timesteps = sample_scheduler.timesteps
 | 
						||
        # elif sample_solver == 'dpm++':
 | 
						||
        #     sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
						||
        #         num_train_timesteps=self.num_train_timesteps,
 | 
						||
        #         shift=1,
 | 
						||
        #         use_dynamic_shifting=False)
 | 
						||
        #     sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
						||
        #     timesteps, _ = retrieve_timesteps(
 | 
						||
        #         sample_scheduler,
 | 
						||
        #         device=self.device,
 | 
						||
        #         sigmas=sampling_sigmas)
 | 
						||
        # else:
 | 
						||
        #     raise NotImplementedError("Unsupported solver.")
 | 
						||
 | 
						||
        # sample videos
 | 
						||
        latents = noise
 | 
						||
        del noise
 | 
						||
        batch_size =len(latents)
 | 
						||
        if target_camera != None:
 | 
						||
            shape = list(latents[0].shape[1:])
 | 
						||
            shape[0] *= 2
 | 
						||
            freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False) 
 | 
						||
        else:
 | 
						||
            freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= enable_RIFLEx) 
 | 
						||
        # arg_c = {'context': context, 'freqs': freqs, 'pipeline': self, 'callback': callback}
 | 
						||
        # arg_null = {'context': context_null, 'freqs': freqs, 'pipeline': self, 'callback': callback}
 | 
						||
        # arg_both = {'context': context, 'context2': context_null,  'freqs': freqs, 'pipeline': self, 'callback': callback}
 | 
						||
 | 
						||
        i2v_extra_kwrags = {}
 | 
						||
 | 
						||
        if target_camera != None:
 | 
						||
            recam_dict = {'cam_emb': cam_emb}
 | 
						||
            i2v_extra_kwrags.update(recam_dict)
 | 
						||
 | 
						||
        if input_frames != None:
 | 
						||
            vace_dict = {'vace_context' : z, 'vace_context_scale' : context_scale}
 | 
						||
            i2v_extra_kwrags.update(vace_dict)
 | 
						||
 | 
						||
        
 | 
						||
        latent_length = (num_frames - 1) // 4 + 1
 | 
						||
        latent_height = height // 8
 | 
						||
        latent_width = width // 8
 | 
						||
        if ar_step == 0: 
 | 
						||
            causal_block_size = 1
 | 
						||
        fps_embeds = [fps] #* prompt_embeds[0].shape[0]
 | 
						||
        fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
 | 
						||
 | 
						||
        self.scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
 | 
						||
        init_timesteps = self.scheduler.timesteps
 | 
						||
        base_num_frames_iter = latent_length
 | 
						||
        latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
 | 
						||
 | 
						||
        prefix_video = None
 | 
						||
        predix_video_latent_length = 0
 | 
						||
 | 
						||
        if prefix_video is not None:
 | 
						||
            latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32)
 | 
						||
        step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
 | 
						||
            base_num_frames_iter,
 | 
						||
            init_timesteps,
 | 
						||
            base_num_frames_iter,
 | 
						||
            ar_step,
 | 
						||
            predix_video_latent_length,
 | 
						||
            causal_block_size,
 | 
						||
        )
 | 
						||
        sample_schedulers = []
 | 
						||
        for _ in range(base_num_frames_iter):
 | 
						||
            sample_scheduler = FlowUniPCMultistepScheduler(
 | 
						||
                num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
 | 
						||
            )
 | 
						||
            sample_scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
 | 
						||
            sample_schedulers.append(sample_scheduler)
 | 
						||
        sample_schedulers_counter = [0] * base_num_frames_iter
 | 
						||
 | 
						||
        updated_num_steps=  len(step_matrix)
 | 
						||
 | 
						||
        if callback != None:
 | 
						||
            callback(-1, None, True, override_num_inference_steps = updated_num_steps)
 | 
						||
        if self.model.enable_teacache:
 | 
						||
            self.model.compute_teacache_threshold(self.model.teacache_start_step, timesteps, self.model.teacache_multiplier)
 | 
						||
        # if callback != None:
 | 
						||
        #     callback(-1, None, True)
 | 
						||
 | 
						||
        for i, timestep_i in enumerate(tqdm(step_matrix)):
 | 
						||
            update_mask_i = step_update_mask[i]
 | 
						||
            valid_interval_i = valid_interval[i]
 | 
						||
            valid_interval_start, valid_interval_end = valid_interval_i
 | 
						||
            timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
 | 
						||
            latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
 | 
						||
            if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
 | 
						||
                noise_factor = 0.001 * addnoise_condition
 | 
						||
                timestep_for_noised_condition = addnoise_condition
 | 
						||
                latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
 | 
						||
                    latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
 | 
						||
                    * (1.0 - noise_factor)
 | 
						||
                    + torch.randn_like(
 | 
						||
                        latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
 | 
						||
                    )
 | 
						||
                    * noise_factor
 | 
						||
                )
 | 
						||
                timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
 | 
						||
            kwrags = {
 | 
						||
                "x" : torch.stack([latent_model_input[0]]),
 | 
						||
                "t" : timestep,
 | 
						||
                "freqs" :freqs,
 | 
						||
                "fps" : fps_embeds,
 | 
						||
                "causal_block_size" : causal_block_size,
 | 
						||
                "causal_attention" : causal_attention,
 | 
						||
                "callback" : callback,
 | 
						||
                "pipeline" : self,
 | 
						||
                "current_step" : i,                 
 | 
						||
            }   
 | 
						||
            kwrags.update(i2v_extra_kwrags)
 | 
						||
                
 | 
						||
            if not self.do_classifier_free_guidance:
 | 
						||
                noise_pred = self.model(
 | 
						||
                    context=context,
 | 
						||
                    **kwrags,
 | 
						||
                )[0]
 | 
						||
                if self._interrupt:
 | 
						||
                    return None
 | 
						||
                noise_pred= noise_pred.to(torch.float32)                                                                  
 | 
						||
            else:
 | 
						||
                if joint_pass:
 | 
						||
                    noise_pred_cond, noise_pred_uncond = self.model(
 | 
						||
                        context=context,
 | 
						||
                        context2=context_null,
 | 
						||
                        **kwrags,
 | 
						||
                    )
 | 
						||
                    if self._interrupt:
 | 
						||
                        return None                
 | 
						||
                else:
 | 
						||
                    noise_pred_cond = self.model(
 | 
						||
                        context=context,
 | 
						||
                        **kwrags,
 | 
						||
                    )[0]
 | 
						||
                    if self._interrupt:
 | 
						||
                        return None                
 | 
						||
                    noise_pred_uncond = self.model(
 | 
						||
                        context=context_null,
 | 
						||
                    )[0]
 | 
						||
                    if self._interrupt:
 | 
						||
                        return None
 | 
						||
                noise_pred_cond= noise_pred_cond.to(torch.float32)                                          
 | 
						||
                noise_pred_uncond= noise_pred_uncond.to(torch.float32)                                          
 | 
						||
                noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond)
 | 
						||
                del noise_pred_cond, noise_pred_uncond
 | 
						||
            for idx in range(valid_interval_start, valid_interval_end):
 | 
						||
                if update_mask_i[idx].item():
 | 
						||
                    latents[0][:, idx] = sample_schedulers[idx].step(
 | 
						||
                        noise_pred[:, idx - valid_interval_start],
 | 
						||
                        timestep_i[idx],
 | 
						||
                        latents[0][:, idx],
 | 
						||
                        return_dict=False,
 | 
						||
                        generator=seed_g,
 | 
						||
                    )[0]
 | 
						||
                    sample_schedulers_counter[idx] += 1
 | 
						||
            if callback is not None:
 | 
						||
                callback(i, latents[0].squeeze(0), False)         
 | 
						||
 | 
						||
        # for i, t in enumerate(tqdm(timesteps)):
 | 
						||
        #     if target_camera != None:
 | 
						||
        #         latent_model_input = [torch.cat([u,v], dim=1) for u,v in zip(latents,source_latents )]
 | 
						||
        #     else:
 | 
						||
        #         latent_model_input = latents
 | 
						||
        #     slg_layers_local = None
 | 
						||
        #     if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps):
 | 
						||
        #         slg_layers_local = slg_layers
 | 
						||
        #     timestep = [t]
 | 
						||
        #     offload.set_step_no_for_lora(self.model, i)
 | 
						||
        #     timestep = torch.stack(timestep)
 | 
						||
 | 
						||
        #     if joint_pass:
 | 
						||
        #         noise_pred_cond, noise_pred_uncond = self.model(
 | 
						||
        #             latent_model_input, t=timestep,  current_step=i, slg_layers=slg_layers_local, **arg_both)
 | 
						||
        #         if self._interrupt:
 | 
						||
        #             return None
 | 
						||
        #     else:
 | 
						||
        #         noise_pred_cond = self.model(
 | 
						||
        #             latent_model_input, t=timestep,current_step=i, is_uncond = False, **arg_c)[0]
 | 
						||
        #         if self._interrupt:
 | 
						||
        #             return None               
 | 
						||
        #         noise_pred_uncond = self.model(
 | 
						||
        #             latent_model_input, t=timestep,current_step=i, is_uncond = True, slg_layers=slg_layers_local, **arg_null)[0]
 | 
						||
        #         if self._interrupt:
 | 
						||
        #             return None
 | 
						||
 | 
						||
        #     # del latent_model_input
 | 
						||
 | 
						||
        #     # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/
 | 
						||
        #     noise_pred_text = noise_pred_cond
 | 
						||
        #     if cfg_star_switch:
 | 
						||
        #         positive_flat = noise_pred_text.view(batch_size, -1)  
 | 
						||
        #         negative_flat = noise_pred_uncond.view(batch_size, -1)  
 | 
						||
 | 
						||
        #         alpha = optimized_scale(positive_flat,negative_flat)
 | 
						||
        #         alpha = alpha.view(batch_size, 1, 1, 1)
 | 
						||
 | 
						||
        #         if (i <= cfg_zero_step):
 | 
						||
        #             noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred...
 | 
						||
        #         else:
 | 
						||
        #             noise_pred_uncond *= alpha
 | 
						||
        #     noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond)            
 | 
						||
        #     del noise_pred_uncond
 | 
						||
 | 
						||
        #     temp_x0 = sample_scheduler.step(
 | 
						||
        #         noise_pred[:, :target_shape[1]].unsqueeze(0),
 | 
						||
        #         t,
 | 
						||
        #         latents[0].unsqueeze(0),
 | 
						||
        #         return_dict=False,
 | 
						||
        #         generator=seed_g)[0]
 | 
						||
        #     latents = [temp_x0.squeeze(0)]
 | 
						||
        #     del temp_x0
 | 
						||
 | 
						||
        #     if callback is not None:
 | 
						||
        #         callback(i, latents[0], False)         
 | 
						||
 | 
						||
        x0 = latents
 | 
						||
 | 
						||
        if input_frames == None:
 | 
						||
            videos = self.vae.decode(x0, VAE_tile_size)
 | 
						||
        else:
 | 
						||
            videos = self.decode_latent(x0, input_ref_images, VAE_tile_size)
 | 
						||
 | 
						||
        del latents
 | 
						||
        del sample_scheduler
 | 
						||
 | 
						||
        return videos[0] if self.rank == 0 else None
 | 
						||
 | 
						||
    def adapt_vace_model(self):
 | 
						||
        model = self.model
 | 
						||
        modules_dict= { k: m for k, m in model.named_modules()}
 | 
						||
        for model_layer, vace_layer in model.vace_layers_mapping.items():
 | 
						||
            module = modules_dict[f"vace_blocks.{vace_layer}"]
 | 
						||
            target = modules_dict[f"blocks.{model_layer}"]
 | 
						||
            setattr(target, "vace", module )
 | 
						||
        delattr(model, "vace_blocks")
 | 
						||
                    
 | 
						||
  |