mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
343 lines
14 KiB
Python
343 lines
14 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Convert a Flux model from Diffusers (folder or single-file) into the original
|
|
single-file Flux transformer checkpoint used by Black Forest Labs / ComfyUI.
|
|
|
|
Input : /path/to/diffusers (root or .../transformer) OR /path/to/*.safetensors (single file)
|
|
Output : /path/to/flux1-your-model.safetensors (transformer only)
|
|
|
|
Usage:
|
|
python diffusers_to_flux_transformer.py /path/to/diffusers /out/flux1-dev.safetensors
|
|
python diffusers_to_flux_transformer.py /path/to/diffusion_pytorch_model.safetensors /out/flux1-dev.safetensors
|
|
# optional quantization:
|
|
# --fp8 (float8_e4m3fn, simple)
|
|
# --fp8-scaled (scaled float8 for 2D weights; adds .scale_weight tensors)
|
|
"""
|
|
|
|
import argparse
|
|
import json
|
|
from pathlib import Path
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
from safetensors import safe_open
|
|
import safetensors.torch
|
|
from tqdm import tqdm
|
|
|
|
|
|
def parse_args():
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument("diffusers_path", type=str,
|
|
help="Path to Diffusers checkpoint folder OR a single .safetensors file.")
|
|
ap.add_argument("output_path", type=str,
|
|
help="Output .safetensors path for the Flux transformer.")
|
|
ap.add_argument("--fp8", action="store_true",
|
|
help="Experimental: write weights as float8_e4m3fn via stochastic rounding (transformer only).")
|
|
ap.add_argument("--fp8-scaled", action="store_true",
|
|
help="Experimental: scaled float8_e4m3fn for 2D weight tensors; adds .scale_weight tensors.")
|
|
return ap.parse_args()
|
|
|
|
|
|
# Mapping from original Flux keys -> list of Diffusers keys (per block where applicable).
|
|
DIFFUSERS_MAP = {
|
|
# global embeds
|
|
"time_in.in_layer.weight": ["time_text_embed.timestep_embedder.linear_1.weight"],
|
|
"time_in.in_layer.bias": ["time_text_embed.timestep_embedder.linear_1.bias"],
|
|
"time_in.out_layer.weight": ["time_text_embed.timestep_embedder.linear_2.weight"],
|
|
"time_in.out_layer.bias": ["time_text_embed.timestep_embedder.linear_2.bias"],
|
|
|
|
"vector_in.in_layer.weight": ["time_text_embed.text_embedder.linear_1.weight"],
|
|
"vector_in.in_layer.bias": ["time_text_embed.text_embedder.linear_1.bias"],
|
|
"vector_in.out_layer.weight": ["time_text_embed.text_embedder.linear_2.weight"],
|
|
"vector_in.out_layer.bias": ["time_text_embed.text_embedder.linear_2.bias"],
|
|
|
|
"guidance_in.in_layer.weight": ["time_text_embed.guidance_embedder.linear_1.weight"],
|
|
"guidance_in.in_layer.bias": ["time_text_embed.guidance_embedder.linear_1.bias"],
|
|
"guidance_in.out_layer.weight": ["time_text_embed.guidance_embedder.linear_2.weight"],
|
|
"guidance_in.out_layer.bias": ["time_text_embed.guidance_embedder.linear_2.bias"],
|
|
|
|
"txt_in.weight": ["context_embedder.weight"],
|
|
"txt_in.bias": ["context_embedder.bias"],
|
|
"img_in.weight": ["x_embedder.weight"],
|
|
"img_in.bias": ["x_embedder.bias"],
|
|
|
|
# dual-stream (image/text) blocks
|
|
"double_blocks.().img_mod.lin.weight": ["norm1.linear.weight"],
|
|
"double_blocks.().img_mod.lin.bias": ["norm1.linear.bias"],
|
|
"double_blocks.().txt_mod.lin.weight": ["norm1_context.linear.weight"],
|
|
"double_blocks.().txt_mod.lin.bias": ["norm1_context.linear.bias"],
|
|
|
|
"double_blocks.().img_attn.qkv.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight"],
|
|
"double_blocks.().img_attn.qkv.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias"],
|
|
"double_blocks.().txt_attn.qkv.weight": ["attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight"],
|
|
"double_blocks.().txt_attn.qkv.bias": ["attn.add_q_proj.bias", "attn.add_k_proj.bias", "attn.add_v_proj.bias"],
|
|
|
|
"double_blocks.().img_attn.norm.query_norm.scale": ["attn.norm_q.weight"],
|
|
"double_blocks.().img_attn.norm.key_norm.scale": ["attn.norm_k.weight"],
|
|
"double_blocks.().txt_attn.norm.query_norm.scale": ["attn.norm_added_q.weight"],
|
|
"double_blocks.().txt_attn.norm.key_norm.scale": ["attn.norm_added_k.weight"],
|
|
|
|
"double_blocks.().img_mlp.0.weight": ["ff.net.0.proj.weight"],
|
|
"double_blocks.().img_mlp.0.bias": ["ff.net.0.proj.bias"],
|
|
"double_blocks.().img_mlp.2.weight": ["ff.net.2.weight"],
|
|
"double_blocks.().img_mlp.2.bias": ["ff.net.2.bias"],
|
|
|
|
"double_blocks.().txt_mlp.0.weight": ["ff_context.net.0.proj.weight"],
|
|
"double_blocks.().txt_mlp.0.bias": ["ff_context.net.0.proj.bias"],
|
|
"double_blocks.().txt_mlp.2.weight": ["ff_context.net.2.weight"],
|
|
"double_blocks.().txt_mlp.2.bias": ["ff_context.net.2.bias"],
|
|
|
|
"double_blocks.().img_attn.proj.weight": ["attn.to_out.0.weight"],
|
|
"double_blocks.().img_attn.proj.bias": ["attn.to_out.0.bias"],
|
|
"double_blocks.().txt_attn.proj.weight": ["attn.to_add_out.weight"],
|
|
"double_blocks.().txt_attn.proj.bias": ["attn.to_add_out.bias"],
|
|
|
|
# single-stream blocks
|
|
"single_blocks.().modulation.lin.weight": ["norm.linear.weight"],
|
|
"single_blocks.().modulation.lin.bias": ["norm.linear.bias"],
|
|
"single_blocks.().linear1.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight"],
|
|
"single_blocks.().linear1.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", "proj_mlp.bias"],
|
|
"single_blocks.().norm.query_norm.scale": ["attn.norm_q.weight"],
|
|
"single_blocks.().norm.key_norm.scale": ["attn.norm_k.weight"],
|
|
"single_blocks.().linear2.weight": ["proj_out.weight"],
|
|
"single_blocks.().linear2.bias": ["proj_out.bias"],
|
|
|
|
# final
|
|
"final_layer.linear.weight": ["proj_out.weight"],
|
|
"final_layer.linear.bias": ["proj_out.bias"],
|
|
# these two are built from norm_out.linear.{weight,bias} by swapping [shift,scale] -> [scale,shift]
|
|
"final_layer.adaLN_modulation.1.weight": ["norm_out.linear.weight"],
|
|
"final_layer.adaLN_modulation.1.bias": ["norm_out.linear.bias"],
|
|
}
|
|
|
|
|
|
class DiffusersSource:
|
|
"""
|
|
Uniform interface over:
|
|
1) Folder with index JSON + shards
|
|
2) Folder with exactly one .safetensors (no index)
|
|
3) Single .safetensors file
|
|
Provides .has(key), .get(key)->Tensor, .base_keys (keys with 'model.' stripped for scanning)
|
|
"""
|
|
|
|
POSSIBLE_PREFIXES = ["", "model."] # try in this order
|
|
|
|
def __init__(self, path: Path):
|
|
p = Path(path)
|
|
if p.is_dir():
|
|
# use 'transformer' subfolder if present
|
|
if (p / "transformer").is_dir():
|
|
p = p / "transformer"
|
|
self._init_from_dir(p)
|
|
elif p.is_file() and p.suffix == ".safetensors":
|
|
self._init_from_single_file(p)
|
|
else:
|
|
raise FileNotFoundError(f"Invalid path: {p}")
|
|
|
|
# ---------- common helpers ----------
|
|
|
|
@staticmethod
|
|
def _strip_prefix(k: str) -> str:
|
|
return k[6:] if k.startswith("model.") else k
|
|
|
|
def _resolve(self, want: str):
|
|
"""
|
|
Return the actual stored key matching `want` by trying known prefixes.
|
|
"""
|
|
for pref in self.POSSIBLE_PREFIXES:
|
|
k = pref + want
|
|
if k in self._all_keys:
|
|
return k
|
|
return None
|
|
|
|
def has(self, want: str) -> bool:
|
|
return self._resolve(want) is not None
|
|
|
|
def get(self, want: str) -> torch.Tensor:
|
|
real_key = self._resolve(want)
|
|
if real_key is None:
|
|
raise KeyError(f"Missing key: {want}")
|
|
return self._get_by_real_key(real_key).to("cpu")
|
|
|
|
@property
|
|
def base_keys(self):
|
|
# keys without 'model.' prefix for scanning
|
|
return [self._strip_prefix(k) for k in self._all_keys]
|
|
|
|
# ---------- modes ----------
|
|
|
|
def _init_from_single_file(self, file_path: Path):
|
|
self._mode = "single"
|
|
self._file = file_path
|
|
self._handle = safe_open(file_path, framework="pt", device="cpu")
|
|
self._all_keys = list(self._handle.keys())
|
|
|
|
def _get_by_real_key(real_key: str):
|
|
return self._handle.get_tensor(real_key)
|
|
|
|
self._get_by_real_key = _get_by_real_key
|
|
|
|
def _init_from_dir(self, dpath: Path):
|
|
index_json = dpath / "diffusion_pytorch_model.safetensors.index.json"
|
|
if index_json.exists():
|
|
with open(index_json, "r", encoding="utf-8") as f:
|
|
index = json.load(f)
|
|
weight_map = index["weight_map"] # full mapping
|
|
self._mode = "sharded"
|
|
self._dpath = dpath
|
|
self._weight_map = {k: dpath / v for k, v in weight_map.items()}
|
|
self._all_keys = list(self._weight_map.keys())
|
|
self._open_handles = {}
|
|
|
|
def _get_by_real_key(real_key: str):
|
|
fpath = self._weight_map[real_key]
|
|
h = self._open_handles.get(fpath)
|
|
if h is None:
|
|
h = safe_open(fpath, framework="pt", device="cpu")
|
|
self._open_handles[fpath] = h
|
|
return h.get_tensor(real_key)
|
|
|
|
self._get_by_real_key = _get_by_real_key
|
|
return
|
|
|
|
# no index: try exactly one safetensors in folder
|
|
files = sorted(dpath.glob("*.safetensors"))
|
|
if len(files) != 1:
|
|
raise FileNotFoundError(
|
|
f"No index found and {dpath} does not contain exactly one .safetensors file."
|
|
)
|
|
self._init_from_single_file(files[0])
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
src = DiffusersSource(Path(args.diffusers_path))
|
|
|
|
# Count blocks by scanning base keys (with any 'model.' prefix removed)
|
|
num_dual = 0
|
|
num_single = 0
|
|
for k in src.base_keys:
|
|
if k.startswith("transformer_blocks."):
|
|
try:
|
|
i = int(k.split(".")[1])
|
|
num_dual = max(num_dual, i + 1)
|
|
except Exception:
|
|
pass
|
|
elif k.startswith("single_transformer_blocks."):
|
|
try:
|
|
i = int(k.split(".")[1])
|
|
num_single = max(num_single, i + 1)
|
|
except Exception:
|
|
pass
|
|
print(f"Found {num_dual} dual-stream blocks, {num_single} single-stream blocks")
|
|
|
|
# Swap [shift, scale] -> [scale, shift] (weights are concatenated along dim=0)
|
|
def swap_scale_shift(vec: torch.Tensor) -> torch.Tensor:
|
|
shift, scale = vec.chunk(2, dim=0)
|
|
return torch.cat([scale, shift], dim=0)
|
|
|
|
orig = {}
|
|
|
|
# Per-block (dual)
|
|
for b in range(num_dual):
|
|
prefix = f"transformer_blocks.{b}."
|
|
for okey, dvals in DIFFUSERS_MAP.items():
|
|
if not okey.startswith("double_blocks."):
|
|
continue
|
|
dkeys = [prefix + v for v in dvals]
|
|
if not all(src.has(k) for k in dkeys):
|
|
continue
|
|
if len(dkeys) == 1:
|
|
orig[okey.replace("()", str(b))] = src.get(dkeys[0])
|
|
else:
|
|
orig[okey.replace("()", str(b))] = torch.cat([src.get(k) for k in dkeys], dim=0)
|
|
|
|
# Per-block (single)
|
|
for b in range(num_single):
|
|
prefix = f"single_transformer_blocks.{b}."
|
|
for okey, dvals in DIFFUSERS_MAP.items():
|
|
if not okey.startswith("single_blocks."):
|
|
continue
|
|
dkeys = [prefix + v for v in dvals]
|
|
if not all(src.has(k) for k in dkeys):
|
|
continue
|
|
if len(dkeys) == 1:
|
|
orig[okey.replace("()", str(b))] = src.get(dkeys[0])
|
|
else:
|
|
orig[okey.replace("()", str(b))] = torch.cat([src.get(k) for k in dkeys], dim=0)
|
|
|
|
# Globals (non-block)
|
|
for okey, dvals in DIFFUSERS_MAP.items():
|
|
if okey.startswith(("double_blocks.", "single_blocks.")):
|
|
continue
|
|
dkeys = dvals
|
|
if not all(src.has(k) for k in dkeys):
|
|
continue
|
|
if len(dkeys) == 1:
|
|
orig[okey] = src.get(dkeys[0])
|
|
else:
|
|
orig[okey] = torch.cat([src.get(k) for k in dkeys], dim=0)
|
|
|
|
# Fix final_layer.adaLN_modulation.1.{weight,bias} by swapping scale/shift halves
|
|
if "final_layer.adaLN_modulation.1.weight" in orig:
|
|
orig["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(
|
|
orig["final_layer.adaLN_modulation.1.weight"]
|
|
)
|
|
if "final_layer.adaLN_modulation.1.bias" in orig:
|
|
orig["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(
|
|
orig["final_layer.adaLN_modulation.1.bias"]
|
|
)
|
|
|
|
# Optional FP8 variants (experimental; not required for ComfyUI/BFL)
|
|
if args.fp8 or args.fp8_scaled:
|
|
dtype = torch.float8_e4m3fn # noqa
|
|
minv, maxv = torch.finfo(dtype).min, torch.finfo(dtype).max
|
|
|
|
def stochastic_round_to(t):
|
|
t = t.float().clamp(minv, maxv)
|
|
lower = torch.floor(t * 256) / 256
|
|
upper = torch.ceil(t * 256) / 256
|
|
prob = torch.where(upper != lower, (t - lower) / (upper - lower), torch.zeros_like(t))
|
|
rnd = torch.rand_like(t)
|
|
out = torch.where(rnd < prob, upper, lower)
|
|
return out.to(dtype)
|
|
|
|
def scale_to_8bit(weight, target_max=416.0):
|
|
absmax = weight.abs().max()
|
|
scale = absmax / target_max if absmax > 0 else torch.tensor(1.0)
|
|
scaled = (weight / scale).clamp(minv, maxv).to(dtype)
|
|
return scaled, scale
|
|
|
|
scales = {}
|
|
for k in tqdm(list(orig.keys()), desc="Quantizing to fp8"):
|
|
t = orig[k]
|
|
if args.fp8:
|
|
orig[k] = stochastic_round_to(t)
|
|
else:
|
|
if k.endswith(".weight") and t.dim() == 2:
|
|
qt, s = scale_to_8bit(t)
|
|
orig[k] = qt
|
|
scales[k[:-len(".weight")] + ".scale_weight"] = s
|
|
else:
|
|
orig[k] = t.clamp(minv, maxv).to(dtype)
|
|
if args.fp8_scaled:
|
|
orig.update(scales)
|
|
orig["scaled_fp8"] = torch.tensor([], dtype=dtype)
|
|
else:
|
|
# Default: save in bfloat16
|
|
for k in list(orig.keys()):
|
|
orig[k] = orig[k].to(torch.bfloat16).cpu()
|
|
|
|
out_path = Path(args.output_path)
|
|
out_path.parent.mkdir(parents=True, exist_ok=True)
|
|
meta = OrderedDict()
|
|
meta["format"] = "pt"
|
|
meta["modelspec.date"] = __import__("datetime").date.today().strftime("%Y-%m-%d")
|
|
print(f"Saving transformer to: {out_path}")
|
|
safetensors.torch.save_file(orig, str(out_path), metadata=meta)
|
|
print("Done.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|