mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-05 06:29:14 +00:00
284 lines
11 KiB
Python
284 lines
11 KiB
Python
# -*- coding: UTF-8 -*-
|
|
import os
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import torchvision
|
|
|
|
|
|
def xyxy2xywh(x):
|
|
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
|
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
|
y[:, 2] = x[:, 2] - x[:, 0] # width
|
|
y[:, 3] = x[:, 3] - x[:, 1] # height
|
|
return y
|
|
|
|
|
|
def xywh2xyxy(x):
|
|
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
|
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
|
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
|
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
|
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
|
return y
|
|
|
|
|
|
def box_iou(box1, box2):
|
|
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
|
"""
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
Arguments:
|
|
box1 (Tensor[N, 4])
|
|
box2 (Tensor[M, 4])
|
|
Returns:
|
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
|
IoU values for every element in boxes1 and boxes2
|
|
"""
|
|
|
|
def box_area(box):
|
|
# box = 4xn
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
area1 = box_area(box1.T)
|
|
area2 = box_area(box2.T)
|
|
|
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
|
|
torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
|
# iou = inter / (area1 + area2 - inter)
|
|
return inter / (area1[:, None] + area2 - inter)
|
|
|
|
|
|
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
|
if ratio_pad is None: # calculate from img0_shape
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
|
else:
|
|
gain = ratio_pad[0][0]
|
|
pad = ratio_pad[1]
|
|
|
|
coords[:, [0, 2]] -= pad[0] # x padding
|
|
coords[:, [1, 3]] -= pad[1] # y padding
|
|
coords[:, :4] /= gain
|
|
clip_coords(coords, img0_shape)
|
|
return coords
|
|
|
|
|
|
def clip_coords(boxes, img_shape):
|
|
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
|
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
|
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
|
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
|
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
|
|
|
|
|
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
|
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
|
if ratio_pad is None: # calculate from img0_shape
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
|
else:
|
|
gain = ratio_pad[0][0]
|
|
pad = ratio_pad[1]
|
|
|
|
coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
|
|
coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
|
|
coords[:, :10] /= gain
|
|
#clip_coords(coords, img0_shape)
|
|
coords[:, 0].clamp_(0, img0_shape[1]) # x1
|
|
coords[:, 1].clamp_(0, img0_shape[0]) # y1
|
|
coords[:, 2].clamp_(0, img0_shape[1]) # x2
|
|
coords[:, 3].clamp_(0, img0_shape[0]) # y2
|
|
coords[:, 4].clamp_(0, img0_shape[1]) # x3
|
|
coords[:, 5].clamp_(0, img0_shape[0]) # y3
|
|
coords[:, 6].clamp_(0, img0_shape[1]) # x4
|
|
coords[:, 7].clamp_(0, img0_shape[0]) # y4
|
|
coords[:, 8].clamp_(0, img0_shape[1]) # x5
|
|
coords[:, 9].clamp_(0, img0_shape[0]) # y5
|
|
return coords
|
|
|
|
|
|
def show_results(img, xywh, conf, landmarks, class_num):
|
|
h,w,c = img.shape
|
|
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
|
|
x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
|
|
y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
|
|
x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
|
|
y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
|
|
cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=tl, lineType=cv2.LINE_AA)
|
|
|
|
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
|
|
|
|
for i in range(5):
|
|
point_x = int(landmarks[2 * i] * w)
|
|
point_y = int(landmarks[2 * i + 1] * h)
|
|
cv2.circle(img, (point_x, point_y), tl+1, clors[i], -1)
|
|
|
|
tf = max(tl - 1, 1) # font thickness
|
|
label = str(conf)[:5]
|
|
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
|
return img
|
|
|
|
|
|
def make_divisible(x, divisor):
|
|
# Returns x evenly divisible by divisor
|
|
return (x // divisor) * divisor
|
|
|
|
|
|
def non_max_suppression_face(prediction, conf_thres=0.5, iou_thres=0.45, classes=None, agnostic=False, labels=()):
|
|
"""Performs Non-Maximum Suppression (NMS) on inference results
|
|
Returns:
|
|
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
|
|
"""
|
|
|
|
nc = prediction.shape[2] - 15 # number of classes
|
|
xc = prediction[..., 4] > conf_thres # candidates
|
|
|
|
# Settings
|
|
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
|
# time_limit = 10.0 # seconds to quit after
|
|
redundant = True # require redundant detections
|
|
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
|
merge = False # use merge-NMS
|
|
|
|
# t = time.time()
|
|
output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
|
|
for xi, x in enumerate(prediction): # image index, image inference
|
|
# Apply constraints
|
|
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
|
x = x[xc[xi]] # confidence
|
|
|
|
# Cat apriori labels if autolabelling
|
|
if labels and len(labels[xi]):
|
|
l = labels[xi]
|
|
v = torch.zeros((len(l), nc + 15), device=x.device)
|
|
v[:, :4] = l[:, 1:5] # box
|
|
v[:, 4] = 1.0 # conf
|
|
v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls
|
|
x = torch.cat((x, v), 0)
|
|
|
|
# If none remain process next image
|
|
if not x.shape[0]:
|
|
continue
|
|
|
|
# Compute conf
|
|
x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
|
|
|
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
|
box = xywh2xyxy(x[:, :4])
|
|
|
|
# Detections matrix nx6 (xyxy, conf, landmarks, cls)
|
|
if multi_label:
|
|
i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
|
|
x = torch.cat((box[i], x[i, j + 15, None], x[i, 5:15] ,j[:, None].float()), 1)
|
|
else: # best class only
|
|
conf, j = x[:, 15:].max(1, keepdim=True)
|
|
x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
|
|
|
|
# Filter by class
|
|
if classes is not None:
|
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
|
|
|
# If none remain process next image
|
|
n = x.shape[0] # number of boxes
|
|
if not n:
|
|
continue
|
|
|
|
# Batched NMS
|
|
c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
|
|
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
|
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
|
#if i.shape[0] > max_det: # limit detections
|
|
# i = i[:max_det]
|
|
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
|
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
|
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
|
weights = iou * scores[None] # box weights
|
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
|
if redundant:
|
|
i = i[iou.sum(1) > 1] # require redundancy
|
|
|
|
output[xi] = x[i]
|
|
# if (time.time() - t) > time_limit:
|
|
# break # time limit exceeded
|
|
|
|
return output
|
|
|
|
|
|
class DetFace():
|
|
def __init__(self, pt_path, confThreshold=0.5, nmsThreshold=0.45, device='cuda'):
|
|
assert os.path.exists(pt_path)
|
|
|
|
self.inpSize = 416
|
|
self.conf_thres = confThreshold
|
|
self.iou_thres = nmsThreshold
|
|
self.test_device = torch.device(device if torch.cuda.is_available() else "cpu")
|
|
self.model = torch.jit.load(pt_path).to(self.test_device)
|
|
self.last_w = 416
|
|
self.last_h = 416
|
|
self.grids = None
|
|
|
|
@torch.no_grad()
|
|
def detect(self, srcimg):
|
|
# t0=time.time()
|
|
|
|
h0, w0 = srcimg.shape[:2] # orig hw
|
|
r = self.inpSize / min(h0, w0) # resize image to img_size
|
|
h1 = int(h0*r+31)//32*32
|
|
w1 = int(w0*r+31)//32*32
|
|
|
|
img = cv2.resize(srcimg, (w1,h1), interpolation=cv2.INTER_LINEAR)
|
|
|
|
# Convert
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR to RGB
|
|
|
|
# Run inference
|
|
img = torch.from_numpy(img).to(self.test_device).permute(2,0,1)
|
|
img = img.float()/255 # uint8 to fp16/32 0-1
|
|
if img.ndimension() == 3:
|
|
img = img.unsqueeze(0)
|
|
|
|
# Inference
|
|
if h1 != self.last_h or w1 != self.last_w or self.grids is None:
|
|
grids = []
|
|
for scale in [8,16,32]:
|
|
ny = h1//scale
|
|
nx = w1//scale
|
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)], indexing="ij")
|
|
grid = torch.stack((xv, yv), 2).view((1,1,ny, nx, 2)).float()
|
|
grids.append(grid.to(self.test_device))
|
|
self.grids = grids
|
|
self.last_w = w1
|
|
self.last_h = h1
|
|
|
|
pred = self.model(img, self.grids).cpu()
|
|
|
|
# Apply NMS
|
|
det = non_max_suppression_face(pred, self.conf_thres, self.iou_thres)[0]
|
|
# Process detections
|
|
# det = pred[0]
|
|
bboxes = np.zeros((det.shape[0], 4))
|
|
kpss = np.zeros((det.shape[0], 5, 2))
|
|
scores = np.zeros((det.shape[0]))
|
|
# gn = torch.tensor([w0, h0, w0, h0]).to(pred) # normalization gain whwh
|
|
# gn_lks = torch.tensor([w0, h0, w0, h0, w0, h0, w0, h0, w0, h0]).to(pred) # normalization gain landmarks
|
|
det = det.cpu().numpy()
|
|
|
|
for j in range(det.shape[0]):
|
|
# xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(4).cpu().numpy()
|
|
bboxes[j, 0] = det[j, 0] * w0/w1
|
|
bboxes[j, 1] = det[j, 1] * h0/h1
|
|
bboxes[j, 2] = det[j, 2] * w0/w1 - bboxes[j, 0]
|
|
bboxes[j, 3] = det[j, 3] * h0/h1 - bboxes[j, 1]
|
|
scores[j] = det[j, 4]
|
|
# landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(5,2).cpu().numpy()
|
|
kpss[j, :, :] = det[j, 5:15].reshape(5, 2) * np.array([[w0/w1,h0/h1]])
|
|
# class_num = det[j, 15].cpu().numpy()
|
|
# orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)
|
|
return bboxes, kpss, scores
|