mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
308 lines
7.9 KiB
Python
308 lines
7.9 KiB
Python
# Modified from ``https://github.com/wyhsirius/LIA``
|
|
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
import math
|
|
|
|
def custom_qr(input_tensor):
|
|
original_dtype = input_tensor.dtype
|
|
if original_dtype in [torch.bfloat16, torch.float16]:
|
|
q, r = torch.linalg.qr(input_tensor.to(torch.float32))
|
|
return q.to(original_dtype), r.to(original_dtype)
|
|
return torch.linalg.qr(input_tensor)
|
|
|
|
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
|
return F.leaky_relu(input + bias, negative_slope) * scale
|
|
|
|
|
|
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
|
|
_, minor, in_h, in_w = input.shape
|
|
kernel_h, kernel_w = kernel.shape
|
|
|
|
out = input.view(-1, minor, in_h, 1, in_w, 1)
|
|
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
|
|
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
|
|
|
|
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
|
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0),
|
|
max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]
|
|
|
|
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
|
out = F.conv2d(out, w)
|
|
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
|
|
return out[:, :, ::down_y, ::down_x]
|
|
|
|
|
|
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
|
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
|
|
|
|
|
def make_kernel(k):
|
|
k = torch.tensor(k, dtype=torch.float32)
|
|
if k.ndim == 1:
|
|
k = k[None, :] * k[:, None]
|
|
k /= k.sum()
|
|
return k
|
|
|
|
|
|
class FusedLeakyReLU(nn.Module):
|
|
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
|
super().__init__()
|
|
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
|
|
self.negative_slope = negative_slope
|
|
self.scale = scale
|
|
|
|
def forward(self, input):
|
|
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
|
return out
|
|
|
|
|
|
class Blur(nn.Module):
|
|
def __init__(self, kernel, pad, upsample_factor=1):
|
|
super().__init__()
|
|
|
|
kernel = make_kernel(kernel)
|
|
|
|
if upsample_factor > 1:
|
|
kernel = kernel * (upsample_factor ** 2)
|
|
|
|
self.register_buffer('kernel', kernel)
|
|
|
|
self.pad = pad
|
|
|
|
def forward(self, input):
|
|
return upfirdn2d(input, self.kernel, pad=self.pad)
|
|
|
|
|
|
class ScaledLeakyReLU(nn.Module):
|
|
def __init__(self, negative_slope=0.2):
|
|
super().__init__()
|
|
|
|
self.negative_slope = negative_slope
|
|
|
|
def forward(self, input):
|
|
return F.leaky_relu(input, negative_slope=self.negative_slope)
|
|
|
|
|
|
class EqualConv2d(nn.Module):
|
|
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
|
|
super().__init__()
|
|
|
|
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
|
|
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
|
|
|
self.stride = stride
|
|
self.padding = padding
|
|
|
|
if bias:
|
|
self.bias = nn.Parameter(torch.zeros(out_channel))
|
|
else:
|
|
self.bias = None
|
|
|
|
def forward(self, input):
|
|
|
|
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding)
|
|
|
|
def __repr__(self):
|
|
return (
|
|
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
|
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
|
)
|
|
|
|
|
|
class EqualLinear(nn.Module):
|
|
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
|
|
super().__init__()
|
|
|
|
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
|
|
|
if bias:
|
|
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
|
else:
|
|
self.bias = None
|
|
|
|
self.activation = activation
|
|
|
|
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
|
self.lr_mul = lr_mul
|
|
|
|
def forward(self, input):
|
|
|
|
if self.activation:
|
|
out = F.linear(input, self.weight * self.scale)
|
|
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
|
else:
|
|
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
|
|
|
|
return out
|
|
|
|
def __repr__(self):
|
|
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')
|
|
|
|
|
|
class ConvLayer(nn.Sequential):
|
|
def __init__(
|
|
self,
|
|
in_channel,
|
|
out_channel,
|
|
kernel_size,
|
|
downsample=False,
|
|
blur_kernel=[1, 3, 3, 1],
|
|
bias=True,
|
|
activate=True,
|
|
):
|
|
layers = []
|
|
|
|
if downsample:
|
|
factor = 2
|
|
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
|
pad0 = (p + 1) // 2
|
|
pad1 = p // 2
|
|
|
|
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
|
|
|
stride = 2
|
|
self.padding = 0
|
|
|
|
else:
|
|
stride = 1
|
|
self.padding = kernel_size // 2
|
|
|
|
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
|
|
bias=bias and not activate))
|
|
|
|
if activate:
|
|
if bias:
|
|
layers.append(FusedLeakyReLU(out_channel))
|
|
else:
|
|
layers.append(ScaledLeakyReLU(0.2))
|
|
|
|
super().__init__(*layers)
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
|
super().__init__()
|
|
|
|
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
|
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
|
|
|
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False)
|
|
|
|
def forward(self, input):
|
|
out = self.conv1(input)
|
|
out = self.conv2(out)
|
|
|
|
skip = self.skip(input)
|
|
out = (out + skip) / math.sqrt(2)
|
|
|
|
return out
|
|
|
|
|
|
class EncoderApp(nn.Module):
|
|
def __init__(self, size, w_dim=512):
|
|
super(EncoderApp, self).__init__()
|
|
|
|
channels = {
|
|
4: 512,
|
|
8: 512,
|
|
16: 512,
|
|
32: 512,
|
|
64: 256,
|
|
128: 128,
|
|
256: 64,
|
|
512: 32,
|
|
1024: 16
|
|
}
|
|
|
|
self.w_dim = w_dim
|
|
log_size = int(math.log(size, 2))
|
|
|
|
self.convs = nn.ModuleList()
|
|
self.convs.append(ConvLayer(3, channels[size], 1))
|
|
|
|
in_channel = channels[size]
|
|
for i in range(log_size, 2, -1):
|
|
out_channel = channels[2 ** (i - 1)]
|
|
self.convs.append(ResBlock(in_channel, out_channel))
|
|
in_channel = out_channel
|
|
|
|
self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False))
|
|
|
|
def forward(self, x):
|
|
|
|
res = []
|
|
h = x
|
|
for conv in self.convs:
|
|
h = conv(h)
|
|
res.append(h)
|
|
|
|
return res[-1].squeeze(-1).squeeze(-1), res[::-1][2:]
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(self, size, dim=512, dim_motion=20):
|
|
super(Encoder, self).__init__()
|
|
|
|
# appearance netmork
|
|
self.net_app = EncoderApp(size, dim)
|
|
|
|
# motion network
|
|
fc = [EqualLinear(dim, dim)]
|
|
for i in range(3):
|
|
fc.append(EqualLinear(dim, dim))
|
|
|
|
fc.append(EqualLinear(dim, dim_motion))
|
|
self.fc = nn.Sequential(*fc)
|
|
|
|
def enc_app(self, x):
|
|
h_source = self.net_app(x)
|
|
return h_source
|
|
|
|
def enc_motion(self, x):
|
|
h, _ = self.net_app(x)
|
|
h_motion = self.fc(h)
|
|
return h_motion
|
|
|
|
|
|
class Direction(nn.Module):
|
|
def __init__(self, motion_dim):
|
|
super(Direction, self).__init__()
|
|
self.weight = nn.Parameter(torch.randn(512, motion_dim))
|
|
|
|
def forward(self, input):
|
|
|
|
weight = self.weight + 1e-8
|
|
Q, R = custom_qr(weight)
|
|
if input is None:
|
|
return Q
|
|
else:
|
|
input_diag = torch.diag_embed(input) # alpha, diagonal matrix
|
|
out = torch.matmul(input_diag, Q.T)
|
|
out = torch.sum(out, dim=1)
|
|
return out
|
|
|
|
|
|
class Synthesis(nn.Module):
|
|
def __init__(self, motion_dim):
|
|
super(Synthesis, self).__init__()
|
|
self.direction = Direction(motion_dim)
|
|
|
|
|
|
class Generator(nn.Module):
|
|
def __init__(self, size, style_dim=512, motion_dim=20):
|
|
super().__init__()
|
|
|
|
self.enc = Encoder(size, style_dim, motion_dim)
|
|
self.dec = Synthesis(motion_dim)
|
|
|
|
def get_motion(self, img):
|
|
#motion_feat = self.enc.enc_motion(img)
|
|
# motion_feat = torch.utils.checkpoint.checkpoint((self.enc.enc_motion), img, use_reentrant=True)
|
|
with torch.cuda.amp.autocast(dtype=torch.float32):
|
|
motion_feat = self.enc.enc_motion(img)
|
|
motion = self.dec.direction(motion_feat)
|
|
return motion |