mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-03 22:04:53 +00:00
412 lines
15 KiB
Python
412 lines
15 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import argparse
|
|
from datetime import datetime
|
|
import logging
|
|
import os
|
|
import sys
|
|
import warnings
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
import torch, random
|
|
import torch.distributed as dist
|
|
from PIL import Image
|
|
|
|
import wan
|
|
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
|
|
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
|
from wan.utils.utils import cache_video, cache_image, str2bool
|
|
|
|
EXAMPLE_PROMPT = {
|
|
"t2v-1.3B": {
|
|
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
|
},
|
|
"t2v-14B": {
|
|
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
|
},
|
|
"t2i-14B": {
|
|
"prompt": "一个朴素端庄的美人",
|
|
},
|
|
"i2v-14B": {
|
|
"prompt":
|
|
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
|
|
"image":
|
|
"examples/i2v_input.JPG",
|
|
},
|
|
}
|
|
|
|
|
|
def _validate_args(args):
|
|
# Basic check
|
|
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
|
|
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
|
|
assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
|
|
|
|
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
|
|
if args.sample_steps is None:
|
|
args.sample_steps = 40 if "i2v" in args.task else 50
|
|
|
|
if args.sample_shift is None:
|
|
args.sample_shift = 5.0
|
|
if "i2v" in args.task and args.size in ["832*480", "480*832"]:
|
|
args.sample_shift = 3.0
|
|
|
|
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
|
|
if args.frame_num is None:
|
|
args.frame_num = 1 if "t2i" in args.task else 81
|
|
|
|
# T2I frame_num check
|
|
if "t2i" in args.task:
|
|
assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
|
|
|
|
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
|
|
0, sys.maxsize)
|
|
# Size check
|
|
assert args.size in SUPPORTED_SIZES[
|
|
args.
|
|
task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
|
|
|
|
|
|
def _parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="Generate a image or video from a text prompt or image using Wan"
|
|
)
|
|
parser.add_argument(
|
|
"--task",
|
|
type=str,
|
|
default="t2v-14B",
|
|
choices=list(WAN_CONFIGS.keys()),
|
|
help="The task to run.")
|
|
parser.add_argument(
|
|
"--size",
|
|
type=str,
|
|
default="1280*720",
|
|
choices=list(SIZE_CONFIGS.keys()),
|
|
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
|
|
)
|
|
parser.add_argument(
|
|
"--frame_num",
|
|
type=int,
|
|
default=None,
|
|
help="How many frames to sample from a image or video. The number should be 4n+1"
|
|
)
|
|
parser.add_argument(
|
|
"--ckpt_dir",
|
|
type=str,
|
|
default=None,
|
|
help="The path to the checkpoint directory.")
|
|
parser.add_argument(
|
|
"--offload_model",
|
|
type=str2bool,
|
|
default=None,
|
|
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
|
|
)
|
|
parser.add_argument(
|
|
"--ulysses_size",
|
|
type=int,
|
|
default=1,
|
|
help="The size of the ulysses parallelism in DiT.")
|
|
parser.add_argument(
|
|
"--ring_size",
|
|
type=int,
|
|
default=1,
|
|
help="The size of the ring attention parallelism in DiT.")
|
|
parser.add_argument(
|
|
"--t5_fsdp",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether to use FSDP for T5.")
|
|
parser.add_argument(
|
|
"--t5_cpu",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether to place T5 model on CPU.")
|
|
parser.add_argument(
|
|
"--dit_fsdp",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether to use FSDP for DiT.")
|
|
parser.add_argument(
|
|
"--save_file",
|
|
type=str,
|
|
default=None,
|
|
help="The file to save the generated image or video to.")
|
|
parser.add_argument(
|
|
"--prompt",
|
|
type=str,
|
|
default=None,
|
|
help="The prompt to generate the image or video from.")
|
|
parser.add_argument(
|
|
"--use_prompt_extend",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether to use prompt extend.")
|
|
parser.add_argument(
|
|
"--prompt_extend_method",
|
|
type=str,
|
|
default="local_qwen",
|
|
choices=["dashscope", "local_qwen"],
|
|
help="The prompt extend method to use.")
|
|
parser.add_argument(
|
|
"--prompt_extend_model",
|
|
type=str,
|
|
default=None,
|
|
help="The prompt extend model to use.")
|
|
parser.add_argument(
|
|
"--prompt_extend_target_lang",
|
|
type=str,
|
|
default="ch",
|
|
choices=["ch", "en"],
|
|
help="The target language of prompt extend.")
|
|
parser.add_argument(
|
|
"--base_seed",
|
|
type=int,
|
|
default=-1,
|
|
help="The seed to use for generating the image or video.")
|
|
parser.add_argument(
|
|
"--image",
|
|
type=str,
|
|
default=None,
|
|
help="The image to generate the video from.")
|
|
parser.add_argument(
|
|
"--sample_solver",
|
|
type=str,
|
|
default='unipc',
|
|
choices=['unipc', 'dpm++'],
|
|
help="The solver used to sample.")
|
|
parser.add_argument(
|
|
"--sample_steps", type=int, default=None, help="The sampling steps.")
|
|
parser.add_argument(
|
|
"--sample_shift",
|
|
type=float,
|
|
default=None,
|
|
help="Sampling shift factor for flow matching schedulers.")
|
|
parser.add_argument(
|
|
"--sample_guide_scale",
|
|
type=float,
|
|
default=5.0,
|
|
help="Classifier free guidance scale.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
_validate_args(args)
|
|
|
|
return args
|
|
|
|
|
|
def _init_logging(rank):
|
|
# logging
|
|
if rank == 0:
|
|
# set format
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format="[%(asctime)s] %(levelname)s: %(message)s",
|
|
handlers=[logging.StreamHandler(stream=sys.stdout)])
|
|
else:
|
|
logging.basicConfig(level=logging.ERROR)
|
|
|
|
|
|
def generate(args):
|
|
rank = int(os.getenv("RANK", 0))
|
|
world_size = int(os.getenv("WORLD_SIZE", 1))
|
|
local_rank = int(os.getenv("LOCAL_RANK", 0))
|
|
device = local_rank
|
|
_init_logging(rank)
|
|
|
|
if args.offload_model is None:
|
|
args.offload_model = False if world_size > 1 else True
|
|
logging.info(
|
|
f"offload_model is not specified, set to {args.offload_model}.")
|
|
if world_size > 1:
|
|
torch.cuda.set_device(local_rank)
|
|
dist.init_process_group(
|
|
backend="nccl",
|
|
init_method="env://",
|
|
rank=rank,
|
|
world_size=world_size)
|
|
else:
|
|
assert not (
|
|
args.t5_fsdp or args.dit_fsdp
|
|
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
|
|
assert not (
|
|
args.ulysses_size > 1 or args.ring_size > 1
|
|
), f"context parallel are not supported in non-distributed environments."
|
|
|
|
if args.ulysses_size > 1 or args.ring_size > 1:
|
|
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
|
|
from xfuser.core.distributed import (initialize_model_parallel,
|
|
init_distributed_environment)
|
|
init_distributed_environment(
|
|
rank=dist.get_rank(), world_size=dist.get_world_size())
|
|
|
|
initialize_model_parallel(
|
|
sequence_parallel_degree=dist.get_world_size(),
|
|
ring_degree=args.ring_size,
|
|
ulysses_degree=args.ulysses_size,
|
|
)
|
|
|
|
if args.use_prompt_extend:
|
|
if args.prompt_extend_method == "dashscope":
|
|
prompt_expander = DashScopePromptExpander(
|
|
model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
|
|
elif args.prompt_extend_method == "local_qwen":
|
|
prompt_expander = QwenPromptExpander(
|
|
model_name=args.prompt_extend_model,
|
|
is_vl="i2v" in args.task,
|
|
device=rank)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
|
|
|
|
cfg = WAN_CONFIGS[args.task]
|
|
if args.ulysses_size > 1:
|
|
assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
|
|
|
|
logging.info(f"Generation job args: {args}")
|
|
logging.info(f"Generation model config: {cfg}")
|
|
|
|
if dist.is_initialized():
|
|
base_seed = [args.base_seed] if rank == 0 else [None]
|
|
dist.broadcast_object_list(base_seed, src=0)
|
|
args.base_seed = base_seed[0]
|
|
|
|
if "t2v" in args.task or "t2i" in args.task:
|
|
if args.prompt is None:
|
|
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
|
logging.info(f"Input prompt: {args.prompt}")
|
|
if args.use_prompt_extend:
|
|
logging.info("Extending prompt ...")
|
|
if rank == 0:
|
|
prompt_output = prompt_expander(
|
|
args.prompt,
|
|
tar_lang=args.prompt_extend_target_lang,
|
|
seed=args.base_seed)
|
|
if prompt_output.status == False:
|
|
logging.info(
|
|
f"Extending prompt failed: {prompt_output.message}")
|
|
logging.info("Falling back to original prompt.")
|
|
input_prompt = args.prompt
|
|
else:
|
|
input_prompt = prompt_output.prompt
|
|
input_prompt = [input_prompt]
|
|
else:
|
|
input_prompt = [None]
|
|
if dist.is_initialized():
|
|
dist.broadcast_object_list(input_prompt, src=0)
|
|
args.prompt = input_prompt[0]
|
|
logging.info(f"Extended prompt: {args.prompt}")
|
|
|
|
logging.info("Creating WanT2V pipeline.")
|
|
wan_t2v = wan.WanT2V(
|
|
config=cfg,
|
|
checkpoint_dir=args.ckpt_dir,
|
|
device_id=device,
|
|
rank=rank,
|
|
t5_fsdp=args.t5_fsdp,
|
|
dit_fsdp=args.dit_fsdp,
|
|
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
|
t5_cpu=args.t5_cpu,
|
|
)
|
|
|
|
logging.info(
|
|
f"Generating {'image' if 't2i' in args.task else 'video'} ...")
|
|
video = wan_t2v.generate(
|
|
args.prompt,
|
|
size=SIZE_CONFIGS[args.size],
|
|
frame_num=args.frame_num,
|
|
shift=args.sample_shift,
|
|
sample_solver=args.sample_solver,
|
|
sampling_steps=args.sample_steps,
|
|
guide_scale=args.sample_guide_scale,
|
|
seed=args.base_seed,
|
|
offload_model=args.offload_model)
|
|
|
|
else:
|
|
if args.prompt is None:
|
|
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
|
if args.image is None:
|
|
args.image = EXAMPLE_PROMPT[args.task]["image"]
|
|
logging.info(f"Input prompt: {args.prompt}")
|
|
logging.info(f"Input image: {args.image}")
|
|
|
|
img = Image.open(args.image).convert("RGB")
|
|
if args.use_prompt_extend:
|
|
logging.info("Extending prompt ...")
|
|
if rank == 0:
|
|
prompt_output = prompt_expander(
|
|
args.prompt,
|
|
tar_lang=args.prompt_extend_target_lang,
|
|
image=img,
|
|
seed=args.base_seed)
|
|
if prompt_output.status == False:
|
|
logging.info(
|
|
f"Extending prompt failed: {prompt_output.message}")
|
|
logging.info("Falling back to original prompt.")
|
|
input_prompt = args.prompt
|
|
else:
|
|
input_prompt = prompt_output.prompt
|
|
input_prompt = [input_prompt]
|
|
else:
|
|
input_prompt = [None]
|
|
if dist.is_initialized():
|
|
dist.broadcast_object_list(input_prompt, src=0)
|
|
args.prompt = input_prompt[0]
|
|
logging.info(f"Extended prompt: {args.prompt}")
|
|
|
|
logging.info("Creating WanI2V pipeline.")
|
|
wan_i2v = wan.WanI2V(
|
|
config=cfg,
|
|
checkpoint_dir=args.ckpt_dir,
|
|
device_id=device,
|
|
rank=rank,
|
|
t5_fsdp=args.t5_fsdp,
|
|
dit_fsdp=args.dit_fsdp,
|
|
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
|
t5_cpu=args.t5_cpu,
|
|
)
|
|
|
|
logging.info("Generating video ...")
|
|
video = wan_i2v.generate(
|
|
args.prompt,
|
|
img,
|
|
max_area=MAX_AREA_CONFIGS[args.size],
|
|
frame_num=args.frame_num,
|
|
shift=args.sample_shift,
|
|
sample_solver=args.sample_solver,
|
|
sampling_steps=args.sample_steps,
|
|
guide_scale=args.sample_guide_scale,
|
|
seed=args.base_seed,
|
|
offload_model=args.offload_model)
|
|
|
|
if rank == 0:
|
|
if args.save_file is None:
|
|
formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
formatted_prompt = args.prompt.replace(" ", "_").replace("/",
|
|
"_")[:50]
|
|
suffix = '.png' if "t2i" in args.task else '.mp4'
|
|
args.save_file = f"{args.task}_{args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}" + suffix
|
|
|
|
if "t2i" in args.task:
|
|
logging.info(f"Saving generated image to {args.save_file}")
|
|
cache_image(
|
|
tensor=video.squeeze(1)[None],
|
|
save_file=args.save_file,
|
|
nrow=1,
|
|
normalize=True,
|
|
value_range=(-1, 1))
|
|
else:
|
|
logging.info(f"Saving generated video to {args.save_file}")
|
|
cache_video(
|
|
tensor=video[None],
|
|
save_file=args.save_file,
|
|
fps=cfg.sample_fps,
|
|
nrow=1,
|
|
normalize=True,
|
|
value_range=(-1, 1))
|
|
logging.info("Finished.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = _parse_args()
|
|
generate(args)
|