mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-03 22:04:53 +00:00
180 lines
5.3 KiB
Python
180 lines
5.3 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import torch
|
|
|
|
try:
|
|
import flash_attn_interface
|
|
FLASH_ATTN_3_AVAILABLE = True
|
|
except ModuleNotFoundError:
|
|
FLASH_ATTN_3_AVAILABLE = False
|
|
|
|
try:
|
|
import flash_attn
|
|
FLASH_ATTN_2_AVAILABLE = True
|
|
except ModuleNotFoundError:
|
|
FLASH_ATTN_2_AVAILABLE = False
|
|
|
|
import warnings
|
|
|
|
__all__ = [
|
|
'flash_attention',
|
|
'attention',
|
|
]
|
|
|
|
|
|
def flash_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
q_lens=None,
|
|
k_lens=None,
|
|
dropout_p=0.,
|
|
softmax_scale=None,
|
|
q_scale=None,
|
|
causal=False,
|
|
window_size=(-1, -1),
|
|
deterministic=False,
|
|
dtype=torch.bfloat16,
|
|
version=None,
|
|
):
|
|
"""
|
|
q: [B, Lq, Nq, C1].
|
|
k: [B, Lk, Nk, C1].
|
|
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
|
|
q_lens: [B].
|
|
k_lens: [B].
|
|
dropout_p: float. Dropout probability.
|
|
softmax_scale: float. The scaling of QK^T before applying softmax.
|
|
causal: bool. Whether to apply causal attention mask.
|
|
window_size: (left right). If not (-1, -1), apply sliding window local attention.
|
|
deterministic: bool. If True, slightly slower and uses more memory.
|
|
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
|
|
"""
|
|
half_dtypes = (torch.float16, torch.bfloat16)
|
|
assert dtype in half_dtypes
|
|
assert q.device.type == 'cuda' and q.size(-1) <= 256
|
|
|
|
# params
|
|
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
|
|
|
|
def half(x):
|
|
return x if x.dtype in half_dtypes else x.to(dtype)
|
|
|
|
# preprocess query
|
|
if q_lens is None:
|
|
q = half(q.flatten(0, 1))
|
|
q_lens = torch.tensor(
|
|
[lq] * b, dtype=torch.int32).to(
|
|
device=q.device, non_blocking=True)
|
|
else:
|
|
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
|
|
|
|
# preprocess key, value
|
|
if k_lens is None:
|
|
k = half(k.flatten(0, 1))
|
|
v = half(v.flatten(0, 1))
|
|
k_lens = torch.tensor(
|
|
[lk] * b, dtype=torch.int32).to(
|
|
device=k.device, non_blocking=True)
|
|
else:
|
|
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
|
|
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
|
|
|
|
q = q.to(v.dtype)
|
|
k = k.to(v.dtype)
|
|
|
|
if q_scale is not None:
|
|
q = q * q_scale
|
|
|
|
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
|
|
warnings.warn(
|
|
'Flash attention 3 is not available, use flash attention 2 instead.'
|
|
)
|
|
|
|
# apply attention
|
|
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
|
|
# Note: dropout_p, window_size are not supported in FA3 now.
|
|
x = flash_attn_interface.flash_attn_varlen_func(
|
|
q=q,
|
|
k=k,
|
|
v=v,
|
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
seqused_q=None,
|
|
seqused_k=None,
|
|
max_seqlen_q=lq,
|
|
max_seqlen_k=lk,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
deterministic=deterministic)[0].unflatten(0, (b, lq))
|
|
else:
|
|
assert FLASH_ATTN_2_AVAILABLE
|
|
x = flash_attn.flash_attn_varlen_func(
|
|
q=q,
|
|
k=k,
|
|
v=v,
|
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
max_seqlen_q=lq,
|
|
max_seqlen_k=lk,
|
|
dropout_p=dropout_p,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
deterministic=deterministic).unflatten(0, (b, lq))
|
|
|
|
# output
|
|
return x.type(out_dtype)
|
|
|
|
|
|
def attention(
|
|
q,
|
|
k,
|
|
v,
|
|
q_lens=None,
|
|
k_lens=None,
|
|
dropout_p=0.,
|
|
softmax_scale=None,
|
|
q_scale=None,
|
|
causal=False,
|
|
window_size=(-1, -1),
|
|
deterministic=False,
|
|
dtype=torch.bfloat16,
|
|
fa_version=None,
|
|
):
|
|
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
|
|
return flash_attention(
|
|
q=q,
|
|
k=k,
|
|
v=v,
|
|
q_lens=q_lens,
|
|
k_lens=k_lens,
|
|
dropout_p=dropout_p,
|
|
softmax_scale=softmax_scale,
|
|
q_scale=q_scale,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
deterministic=deterministic,
|
|
dtype=dtype,
|
|
version=fa_version,
|
|
)
|
|
else:
|
|
if q_lens is not None or k_lens is not None:
|
|
warnings.warn(
|
|
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
|
|
)
|
|
attn_mask = None
|
|
|
|
q = q.transpose(1, 2).to(dtype)
|
|
k = k.transpose(1, 2).to(dtype)
|
|
v = v.transpose(1, 2).to(dtype)
|
|
|
|
out = torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
|
|
|
|
out = out.transpose(1, 2).contiguous()
|
|
return out
|