mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-03 22:04:53 +00:00
514 lines
16 KiB
Python
514 lines
16 KiB
Python
# Modified from transformers.models.t5.modeling_t5
|
|
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import logging
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .tokenizers import HuggingfaceTokenizer
|
|
|
|
__all__ = [
|
|
'T5Model',
|
|
'T5Encoder',
|
|
'T5Decoder',
|
|
'T5EncoderModel',
|
|
]
|
|
|
|
|
|
def fp16_clamp(x):
|
|
if x.dtype == torch.float16 and torch.isinf(x).any():
|
|
clamp = torch.finfo(x.dtype).max - 1000
|
|
x = torch.clamp(x, min=-clamp, max=clamp)
|
|
return x
|
|
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, T5LayerNorm):
|
|
nn.init.ones_(m.weight)
|
|
elif isinstance(m, T5Model):
|
|
nn.init.normal_(m.token_embedding.weight, std=1.0)
|
|
elif isinstance(m, T5FeedForward):
|
|
nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5)
|
|
nn.init.normal_(m.fc1.weight, std=m.dim**-0.5)
|
|
nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5)
|
|
elif isinstance(m, T5Attention):
|
|
nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5)
|
|
nn.init.normal_(m.k.weight, std=m.dim**-0.5)
|
|
nn.init.normal_(m.v.weight, std=m.dim**-0.5)
|
|
nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5)
|
|
elif isinstance(m, T5RelativeEmbedding):
|
|
nn.init.normal_(
|
|
m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5)
|
|
|
|
|
|
class GELU(nn.Module):
|
|
|
|
def forward(self, x):
|
|
return 0.5 * x * (1.0 + torch.tanh(
|
|
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
|
|
|
|
|
class T5LayerNorm(nn.Module):
|
|
|
|
def __init__(self, dim, eps=1e-6):
|
|
super(T5LayerNorm, self).__init__()
|
|
self.dim = dim
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def forward(self, x):
|
|
x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) +
|
|
self.eps)
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
|
x = x.type_as(self.weight)
|
|
return self.weight * x
|
|
|
|
|
|
class T5Attention(nn.Module):
|
|
|
|
def __init__(self, dim, dim_attn, num_heads, dropout=0.1):
|
|
assert dim_attn % num_heads == 0
|
|
super(T5Attention, self).__init__()
|
|
self.dim = dim
|
|
self.dim_attn = dim_attn
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim_attn // num_heads
|
|
|
|
# layers
|
|
self.q = nn.Linear(dim, dim_attn, bias=False)
|
|
self.k = nn.Linear(dim, dim_attn, bias=False)
|
|
self.v = nn.Linear(dim, dim_attn, bias=False)
|
|
self.o = nn.Linear(dim_attn, dim, bias=False)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x, context=None, mask=None, pos_bias=None):
|
|
"""
|
|
x: [B, L1, C].
|
|
context: [B, L2, C] or None.
|
|
mask: [B, L2] or [B, L1, L2] or None.
|
|
"""
|
|
# check inputs
|
|
context = x if context is None else context
|
|
b, n, c = x.size(0), self.num_heads, self.head_dim
|
|
|
|
# compute query, key, value
|
|
q = self.q(x).view(b, -1, n, c)
|
|
k = self.k(context).view(b, -1, n, c)
|
|
v = self.v(context).view(b, -1, n, c)
|
|
|
|
# attention bias
|
|
attn_bias = x.new_zeros(b, n, q.size(1), k.size(1))
|
|
if pos_bias is not None:
|
|
attn_bias += pos_bias
|
|
if mask is not None:
|
|
assert mask.ndim in [2, 3]
|
|
mask = mask.view(b, 1, 1,
|
|
-1) if mask.ndim == 2 else mask.unsqueeze(1)
|
|
attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min)
|
|
|
|
# compute attention (T5 does not use scaling)
|
|
attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias
|
|
attn = F.softmax(attn.float(), dim=-1).type_as(attn)
|
|
x = torch.einsum('bnij,bjnc->binc', attn, v)
|
|
|
|
# output
|
|
x = x.reshape(b, -1, n * c)
|
|
x = self.o(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
|
|
class T5FeedForward(nn.Module):
|
|
|
|
def __init__(self, dim, dim_ffn, dropout=0.1):
|
|
super(T5FeedForward, self).__init__()
|
|
self.dim = dim
|
|
self.dim_ffn = dim_ffn
|
|
|
|
# layers
|
|
self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU())
|
|
self.fc1 = nn.Linear(dim, dim_ffn, bias=False)
|
|
self.fc2 = nn.Linear(dim_ffn, dim, bias=False)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x) * self.gate(x)
|
|
x = self.dropout(x)
|
|
x = self.fc2(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
|
|
class T5SelfAttention(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
dim_attn,
|
|
dim_ffn,
|
|
num_heads,
|
|
num_buckets,
|
|
shared_pos=True,
|
|
dropout=0.1):
|
|
super(T5SelfAttention, self).__init__()
|
|
self.dim = dim
|
|
self.dim_attn = dim_attn
|
|
self.dim_ffn = dim_ffn
|
|
self.num_heads = num_heads
|
|
self.num_buckets = num_buckets
|
|
self.shared_pos = shared_pos
|
|
|
|
# layers
|
|
self.norm1 = T5LayerNorm(dim)
|
|
self.attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
|
self.norm2 = T5LayerNorm(dim)
|
|
self.ffn = T5FeedForward(dim, dim_ffn, dropout)
|
|
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
|
|
num_buckets, num_heads, bidirectional=True)
|
|
|
|
def forward(self, x, mask=None, pos_bias=None):
|
|
e = pos_bias if self.shared_pos else self.pos_embedding(
|
|
x.size(1), x.size(1))
|
|
x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e))
|
|
x = fp16_clamp(x + self.ffn(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class T5CrossAttention(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
dim_attn,
|
|
dim_ffn,
|
|
num_heads,
|
|
num_buckets,
|
|
shared_pos=True,
|
|
dropout=0.1):
|
|
super(T5CrossAttention, self).__init__()
|
|
self.dim = dim
|
|
self.dim_attn = dim_attn
|
|
self.dim_ffn = dim_ffn
|
|
self.num_heads = num_heads
|
|
self.num_buckets = num_buckets
|
|
self.shared_pos = shared_pos
|
|
|
|
# layers
|
|
self.norm1 = T5LayerNorm(dim)
|
|
self.self_attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
|
self.norm2 = T5LayerNorm(dim)
|
|
self.cross_attn = T5Attention(dim, dim_attn, num_heads, dropout)
|
|
self.norm3 = T5LayerNorm(dim)
|
|
self.ffn = T5FeedForward(dim, dim_ffn, dropout)
|
|
self.pos_embedding = None if shared_pos else T5RelativeEmbedding(
|
|
num_buckets, num_heads, bidirectional=False)
|
|
|
|
def forward(self,
|
|
x,
|
|
mask=None,
|
|
encoder_states=None,
|
|
encoder_mask=None,
|
|
pos_bias=None):
|
|
e = pos_bias if self.shared_pos else self.pos_embedding(
|
|
x.size(1), x.size(1))
|
|
x = fp16_clamp(x + self.self_attn(self.norm1(x), mask=mask, pos_bias=e))
|
|
x = fp16_clamp(x + self.cross_attn(
|
|
self.norm2(x), context=encoder_states, mask=encoder_mask))
|
|
x = fp16_clamp(x + self.ffn(self.norm3(x)))
|
|
return x
|
|
|
|
|
|
class T5RelativeEmbedding(nn.Module):
|
|
|
|
def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128):
|
|
super(T5RelativeEmbedding, self).__init__()
|
|
self.num_buckets = num_buckets
|
|
self.num_heads = num_heads
|
|
self.bidirectional = bidirectional
|
|
self.max_dist = max_dist
|
|
|
|
# layers
|
|
self.embedding = nn.Embedding(num_buckets, num_heads)
|
|
|
|
def forward(self, lq, lk):
|
|
device = self.embedding.weight.device
|
|
# rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \
|
|
# torch.arange(lq).unsqueeze(1).to(device)
|
|
rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \
|
|
torch.arange(lq, device=device).unsqueeze(1)
|
|
rel_pos = self._relative_position_bucket(rel_pos)
|
|
rel_pos_embeds = self.embedding(rel_pos)
|
|
rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze(
|
|
0) # [1, N, Lq, Lk]
|
|
return rel_pos_embeds.contiguous()
|
|
|
|
def _relative_position_bucket(self, rel_pos):
|
|
# preprocess
|
|
if self.bidirectional:
|
|
num_buckets = self.num_buckets // 2
|
|
rel_buckets = (rel_pos > 0).long() * num_buckets
|
|
rel_pos = torch.abs(rel_pos)
|
|
else:
|
|
num_buckets = self.num_buckets
|
|
rel_buckets = 0
|
|
rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos))
|
|
|
|
# embeddings for small and large positions
|
|
max_exact = num_buckets // 2
|
|
rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) /
|
|
math.log(self.max_dist / max_exact) *
|
|
(num_buckets - max_exact)).long()
|
|
rel_pos_large = torch.min(
|
|
rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1))
|
|
rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large)
|
|
return rel_buckets
|
|
|
|
|
|
class T5Encoder(nn.Module):
|
|
|
|
def __init__(self,
|
|
vocab,
|
|
dim,
|
|
dim_attn,
|
|
dim_ffn,
|
|
num_heads,
|
|
num_layers,
|
|
num_buckets,
|
|
shared_pos=True,
|
|
dropout=0.1):
|
|
super(T5Encoder, self).__init__()
|
|
self.dim = dim
|
|
self.dim_attn = dim_attn
|
|
self.dim_ffn = dim_ffn
|
|
self.num_heads = num_heads
|
|
self.num_layers = num_layers
|
|
self.num_buckets = num_buckets
|
|
self.shared_pos = shared_pos
|
|
|
|
# layers
|
|
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
|
|
else nn.Embedding(vocab, dim)
|
|
self.pos_embedding = T5RelativeEmbedding(
|
|
num_buckets, num_heads, bidirectional=True) if shared_pos else None
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.blocks = nn.ModuleList([
|
|
T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
|
|
shared_pos, dropout) for _ in range(num_layers)
|
|
])
|
|
self.norm = T5LayerNorm(dim)
|
|
|
|
# initialize weights
|
|
self.apply(init_weights)
|
|
|
|
def forward(self, ids, mask=None):
|
|
x = self.token_embedding(ids)
|
|
x = self.dropout(x)
|
|
e = self.pos_embedding(x.size(1),
|
|
x.size(1)) if self.shared_pos else None
|
|
for block in self.blocks:
|
|
x = block(x, mask, pos_bias=e)
|
|
x = self.norm(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
|
|
class T5Decoder(nn.Module):
|
|
|
|
def __init__(self,
|
|
vocab,
|
|
dim,
|
|
dim_attn,
|
|
dim_ffn,
|
|
num_heads,
|
|
num_layers,
|
|
num_buckets,
|
|
shared_pos=True,
|
|
dropout=0.1):
|
|
super(T5Decoder, self).__init__()
|
|
self.dim = dim
|
|
self.dim_attn = dim_attn
|
|
self.dim_ffn = dim_ffn
|
|
self.num_heads = num_heads
|
|
self.num_layers = num_layers
|
|
self.num_buckets = num_buckets
|
|
self.shared_pos = shared_pos
|
|
|
|
# layers
|
|
self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \
|
|
else nn.Embedding(vocab, dim)
|
|
self.pos_embedding = T5RelativeEmbedding(
|
|
num_buckets, num_heads, bidirectional=False) if shared_pos else None
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.blocks = nn.ModuleList([
|
|
T5CrossAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets,
|
|
shared_pos, dropout) for _ in range(num_layers)
|
|
])
|
|
self.norm = T5LayerNorm(dim)
|
|
|
|
# initialize weights
|
|
self.apply(init_weights)
|
|
|
|
def forward(self, ids, mask=None, encoder_states=None, encoder_mask=None):
|
|
b, s = ids.size()
|
|
|
|
# causal mask
|
|
if mask is None:
|
|
mask = torch.tril(torch.ones(1, s, s).to(ids.device))
|
|
elif mask.ndim == 2:
|
|
mask = torch.tril(mask.unsqueeze(1).expand(-1, s, -1))
|
|
|
|
# layers
|
|
x = self.token_embedding(ids)
|
|
x = self.dropout(x)
|
|
e = self.pos_embedding(x.size(1),
|
|
x.size(1)) if self.shared_pos else None
|
|
for block in self.blocks:
|
|
x = block(x, mask, encoder_states, encoder_mask, pos_bias=e)
|
|
x = self.norm(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
|
|
class T5Model(nn.Module):
|
|
|
|
def __init__(self,
|
|
vocab_size,
|
|
dim,
|
|
dim_attn,
|
|
dim_ffn,
|
|
num_heads,
|
|
encoder_layers,
|
|
decoder_layers,
|
|
num_buckets,
|
|
shared_pos=True,
|
|
dropout=0.1):
|
|
super(T5Model, self).__init__()
|
|
self.vocab_size = vocab_size
|
|
self.dim = dim
|
|
self.dim_attn = dim_attn
|
|
self.dim_ffn = dim_ffn
|
|
self.num_heads = num_heads
|
|
self.encoder_layers = encoder_layers
|
|
self.decoder_layers = decoder_layers
|
|
self.num_buckets = num_buckets
|
|
|
|
# layers
|
|
self.token_embedding = nn.Embedding(vocab_size, dim)
|
|
self.encoder = T5Encoder(self.token_embedding, dim, dim_attn, dim_ffn,
|
|
num_heads, encoder_layers, num_buckets,
|
|
shared_pos, dropout)
|
|
self.decoder = T5Decoder(self.token_embedding, dim, dim_attn, dim_ffn,
|
|
num_heads, decoder_layers, num_buckets,
|
|
shared_pos, dropout)
|
|
self.head = nn.Linear(dim, vocab_size, bias=False)
|
|
|
|
# initialize weights
|
|
self.apply(init_weights)
|
|
|
|
def forward(self, encoder_ids, encoder_mask, decoder_ids, decoder_mask):
|
|
x = self.encoder(encoder_ids, encoder_mask)
|
|
x = self.decoder(decoder_ids, decoder_mask, x, encoder_mask)
|
|
x = self.head(x)
|
|
return x
|
|
|
|
|
|
def _t5(name,
|
|
encoder_only=False,
|
|
decoder_only=False,
|
|
return_tokenizer=False,
|
|
tokenizer_kwargs={},
|
|
dtype=torch.float32,
|
|
device='cpu',
|
|
**kwargs):
|
|
# sanity check
|
|
assert not (encoder_only and decoder_only)
|
|
|
|
# params
|
|
if encoder_only:
|
|
model_cls = T5Encoder
|
|
kwargs['vocab'] = kwargs.pop('vocab_size')
|
|
kwargs['num_layers'] = kwargs.pop('encoder_layers')
|
|
_ = kwargs.pop('decoder_layers')
|
|
elif decoder_only:
|
|
model_cls = T5Decoder
|
|
kwargs['vocab'] = kwargs.pop('vocab_size')
|
|
kwargs['num_layers'] = kwargs.pop('decoder_layers')
|
|
_ = kwargs.pop('encoder_layers')
|
|
else:
|
|
model_cls = T5Model
|
|
|
|
# init model
|
|
with torch.device(device):
|
|
model = model_cls(**kwargs)
|
|
|
|
# set device
|
|
model = model.to(dtype=dtype, device=device)
|
|
|
|
# init tokenizer
|
|
if return_tokenizer:
|
|
from .tokenizers import HuggingfaceTokenizer
|
|
tokenizer = HuggingfaceTokenizer(f'google/{name}', **tokenizer_kwargs)
|
|
return model, tokenizer
|
|
else:
|
|
return model
|
|
|
|
|
|
def umt5_xxl(**kwargs):
|
|
cfg = dict(
|
|
vocab_size=256384,
|
|
dim=4096,
|
|
dim_attn=4096,
|
|
dim_ffn=10240,
|
|
num_heads=64,
|
|
encoder_layers=24,
|
|
decoder_layers=24,
|
|
num_buckets=32,
|
|
shared_pos=False,
|
|
dropout=0.1)
|
|
cfg.update(**kwargs)
|
|
return _t5('umt5-xxl', **cfg)
|
|
|
|
|
|
class T5EncoderModel:
|
|
|
|
def __init__(
|
|
self,
|
|
text_len,
|
|
dtype=torch.bfloat16,
|
|
device=torch.cuda.current_device(),
|
|
checkpoint_path=None,
|
|
tokenizer_path=None,
|
|
shard_fn=None,
|
|
):
|
|
self.text_len = text_len
|
|
self.dtype = dtype
|
|
self.device = device
|
|
self.checkpoint_path = checkpoint_path
|
|
self.tokenizer_path = tokenizer_path
|
|
|
|
# init model
|
|
model = umt5_xxl(
|
|
encoder_only=True,
|
|
return_tokenizer=False,
|
|
dtype=dtype,
|
|
device=device).eval().requires_grad_(False)
|
|
logging.info(f'loading {checkpoint_path}')
|
|
model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'))
|
|
self.model = model
|
|
if shard_fn is not None:
|
|
self.model = shard_fn(self.model, sync_module_states=False)
|
|
else:
|
|
self.model.to(self.device)
|
|
# init tokenizer
|
|
self.tokenizer = HuggingfaceTokenizer(
|
|
name=tokenizer_path, seq_len=text_len, clean='whitespace')
|
|
|
|
def __call__(self, texts, device):
|
|
ids, mask = self.tokenizer(
|
|
texts, return_mask=True, add_special_tokens=True)
|
|
ids = ids.to(device)
|
|
mask = mask.to(device)
|
|
seq_lens = mask.gt(0).sum(dim=1).long()
|
|
context = self.model(ids, mask)
|
|
return [u[:v] for u, v in zip(context, seq_lens)]
|