mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-03 22:04:53 +00:00
83 lines
2.4 KiB
Python
83 lines
2.4 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import html
|
|
import string
|
|
|
|
import ftfy
|
|
import regex as re
|
|
from transformers import AutoTokenizer
|
|
|
|
__all__ = ['HuggingfaceTokenizer']
|
|
|
|
|
|
def basic_clean(text):
|
|
text = ftfy.fix_text(text)
|
|
text = html.unescape(html.unescape(text))
|
|
return text.strip()
|
|
|
|
|
|
def whitespace_clean(text):
|
|
text = re.sub(r'\s+', ' ', text)
|
|
text = text.strip()
|
|
return text
|
|
|
|
|
|
def canonicalize(text, keep_punctuation_exact_string=None):
|
|
text = text.replace('_', ' ')
|
|
if keep_punctuation_exact_string:
|
|
text = keep_punctuation_exact_string.join(
|
|
part.translate(str.maketrans('', '', string.punctuation))
|
|
for part in text.split(keep_punctuation_exact_string))
|
|
else:
|
|
text = text.translate(str.maketrans('', '', string.punctuation))
|
|
text = text.lower()
|
|
text = re.sub(r'\s+', ' ', text)
|
|
return text.strip()
|
|
|
|
|
|
class HuggingfaceTokenizer:
|
|
|
|
def __init__(self, name, seq_len=None, clean=None, **kwargs):
|
|
assert clean in (None, 'whitespace', 'lower', 'canonicalize')
|
|
self.name = name
|
|
self.seq_len = seq_len
|
|
self.clean = clean
|
|
|
|
# init tokenizer
|
|
self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs)
|
|
self.vocab_size = self.tokenizer.vocab_size
|
|
|
|
def __call__(self, sequence, **kwargs):
|
|
return_mask = kwargs.pop('return_mask', False)
|
|
|
|
# arguments
|
|
_kwargs = {'return_tensors': 'pt'}
|
|
if self.seq_len is not None:
|
|
_kwargs.update({
|
|
'padding': 'max_length',
|
|
'truncation': True,
|
|
'max_length': self.seq_len
|
|
})
|
|
_kwargs.update(**kwargs)
|
|
|
|
# tokenization
|
|
if isinstance(sequence, str):
|
|
sequence = [sequence]
|
|
if self.clean:
|
|
sequence = [self._clean(u) for u in sequence]
|
|
ids = self.tokenizer(sequence, **_kwargs)
|
|
|
|
# output
|
|
if return_mask:
|
|
return ids.input_ids, ids.attention_mask
|
|
else:
|
|
return ids.input_ids
|
|
|
|
def _clean(self, text):
|
|
if self.clean == 'whitespace':
|
|
text = whitespace_clean(basic_clean(text))
|
|
elif self.clean == 'lower':
|
|
text = whitespace_clean(basic_clean(text)).lower()
|
|
elif self.clean == 'canonicalize':
|
|
text = canonicalize(basic_clean(text))
|
|
return text
|