mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-05 06:29:14 +00:00
58 lines
1.9 KiB
Python
58 lines
1.9 KiB
Python
# -*- coding: utf-8 -*-
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import numpy as np
|
|
import torch
|
|
from einops import rearrange
|
|
from PIL import Image
|
|
|
|
|
|
def convert_to_numpy(image):
|
|
if isinstance(image, Image.Image):
|
|
image = np.array(image)
|
|
elif isinstance(image, torch.Tensor):
|
|
image = image.detach().cpu().numpy()
|
|
elif isinstance(image, np.ndarray):
|
|
image = image.copy()
|
|
else:
|
|
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
|
|
return image
|
|
|
|
class DepthV2Annotator:
|
|
def __init__(self, cfg, device=None):
|
|
from .dpt import DepthAnythingV2
|
|
pretrained_model = cfg['PRETRAINED_MODEL']
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
|
|
self.model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).to(self.device)
|
|
self.model.load_state_dict(
|
|
torch.load(
|
|
pretrained_model,
|
|
map_location=self.device,
|
|
weights_only=True
|
|
)
|
|
)
|
|
self.model.eval()
|
|
|
|
@torch.inference_mode()
|
|
@torch.autocast('cuda', enabled=False)
|
|
def forward(self, image):
|
|
image = convert_to_numpy(image)
|
|
depth = self.model.infer_image(image)
|
|
|
|
depth_pt = depth.copy()
|
|
depth_pt -= np.min(depth_pt)
|
|
depth_pt /= np.max(depth_pt)
|
|
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
|
|
|
depth_image = depth_image[..., np.newaxis]
|
|
depth_image = np.repeat(depth_image, 3, axis=2)
|
|
return depth_image
|
|
|
|
|
|
class DepthV2VideoAnnotator(DepthV2Annotator):
|
|
def forward(self, frames):
|
|
ret_frames = []
|
|
for frame in frames:
|
|
anno_frame = super().forward(np.array(frame))
|
|
ret_frames.append(anno_frame)
|
|
return ret_frames
|