Wan2.1/gradio_server.py
2025-03-28 14:12:07 +11:00

2782 lines
118 KiB
Python

import os
import time
import threading
import argparse
from mmgp import offload, safetensors2, profile_type
try:
import triton
except ImportError:
pass
from pathlib import Path
from datetime import datetime
import gradio as gr
import random
import json
import wan
from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video
from wan.modules.attention import get_attention_modes, get_supported_attention_modes
import torch
import gc
import traceback
import math
import asyncio
from wan.utils import prompt_parser
import base64
import io
from PIL import Image
PROMPT_VARS_MAX = 10
target_mmgp_version = "3.3.4"
from importlib.metadata import version
mmgp_version = version("mmgp")
if mmgp_version != target_mmgp_version:
print(f"Incorrect version of mmgp ({mmgp_version}), version {target_mmgp_version} is needed. Please upgrade with the command 'pip install -r requirements.txt'")
exit()
queue = []
lock = threading.Lock()
current_task_id = None
task_id = 0
progress_tracker = {}
tracker_lock = threading.Lock()
file_list = []
last_model_type = None
def format_time(seconds):
if seconds < 60:
return f"{seconds:.1f}s"
elif seconds < 3600:
minutes = seconds / 60
return f"{minutes:.1f}m"
else:
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
return f"{hours}h {minutes}m"
def pil_to_base64_uri(pil_image, format="png", quality=75):
if pil_image is None:
return None
buffer = io.BytesIO()
try:
img_to_save = pil_image
if format.lower() == 'jpeg' and pil_image.mode == 'RGBA':
img_to_save = pil_image.convert('RGB')
elif format.lower() == 'png' and pil_image.mode not in ['RGB', 'RGBA', 'L', 'P']:
img_to_save = pil_image.convert('RGBA')
elif pil_image.mode == 'P':
img_to_save = pil_image.convert('RGBA' if 'transparency' in pil_image.info else 'RGB')
if format.lower() == 'jpeg':
img_to_save.save(buffer, format=format, quality=quality)
else:
img_to_save.save(buffer, format=format)
img_bytes = buffer.getvalue()
encoded_string = base64.b64encode(img_bytes).decode("utf-8")
return f"data:image/{format.lower()};base64,{encoded_string}"
except Exception as e:
print(f"Error converting PIL to base64: {e}")
return None
def runner():
global current_task_id
while True:
with lock:
for item in queue:
task_id_runner = item['id']
with tracker_lock:
progress = progress_tracker.get(task_id_runner, {})
if item['state'] == "Processing":
current_step = progress.get('current_step', 0)
total_steps = progress.get('total_steps', 0)
elapsed = time.time() - progress.get('start_time', time.time())
status = progress.get('status', "")
repeats = progress.get("repeats", "0/0")
item.update({
'progress': f"{((current_step/total_steps)*100 if total_steps > 0 else 0):.1f}%",
'steps': f"{current_step}/{total_steps}",
'time': format_time(elapsed),
'repeats': f"{repeats}",
'status': f"{status}"
})
if not any(item['state'] == "Processing" for item in queue):
for item in queue:
if item['state'] == "Queued":
item['status'] = "Processing"
item['state'] = "Processing"
current_task_id = item['id']
threading.Thread(target=process_task, args=(item,)).start()
break
time.sleep(1)
def process_prompt_and_add_tasks(
prompt,
negative_prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
repeat_generation,
multi_images_gen_type,
tea_cache,
tea_cache_start_step_perc,
loras_choices,
loras_mult_choices,
image_prompt_type,
image_to_continue,
image_to_end,
video_to_continue,
max_frames,
RIFLEx_setting,
slg_switch,
slg_layers,
slg_start,
slg_end,
cfg_star_switch,
cfg_zero_step,
state_arg,
image2video
):
if len(prompt) ==0:
return
prompt, errors = prompt_parser.process_template(prompt)
if len(errors) > 0:
gr.Info("Error processing prompt template: " + errors)
return
prompts = prompt.replace("\r", "").split("\n")
prompts = [prompt.strip() for prompt in prompts if len(prompt.strip())>0 and not prompt.startswith("#")]
if len(prompts) ==0:
return
for single_prompt in prompts:
task_params = (
single_prompt,
negative_prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
repeat_generation,
multi_images_gen_type,
tea_cache,
tea_cache_start_step_perc,
loras_choices,
loras_mult_choices,
image_prompt_type,
image_to_continue,
image_to_end,
video_to_continue,
max_frames,
RIFLEx_setting,
slg_switch,
slg_layers,
slg_start,
slg_end,
cfg_star_switch,
cfg_zero_step,
state_arg,
image2video
)
add_video_task(*task_params)
return update_queue_data()
def process_task(task):
try:
task_id, *params = task['params']
generate_video(task_id, *params)
finally:
with lock:
queue[:] = [item for item in queue if item['id'] != task['id']]
with tracker_lock:
if task['id'] in progress_tracker:
del progress_tracker[task['id']]
def add_video_task(*params):
global task_id
with lock:
task_id += 1
current_task_id = task_id
start_image_data = params[16] if len(params) > 16 else None
end_image_data = params[17] if len(params) > 17 else None
queue.append({
"id": current_task_id,
"params": (current_task_id,) + params,
"state": "Queued",
"status": "Queued",
"repeats": "0/0",
"progress": "0.0%",
"steps": f"0/{params[5]}",
"time": "--",
"prompt": params[0],
"start_image_data": start_image_data,
"end_image_data": end_image_data
})
return update_queue_data()
def move_up(selected_indices):
if not selected_indices or len(selected_indices) == 0:
return update_queue_data()
idx = selected_indices[0]
if isinstance(idx, list):
idx = idx[0]
idx = int(idx)
with lock:
if idx > 0:
queue[idx], queue[idx-1] = queue[idx-1], queue[idx]
return update_queue_data()
def move_down(selected_indices):
if not selected_indices or len(selected_indices) == 0:
return update_queue_data()
idx = selected_indices[0]
if isinstance(idx, list):
idx = idx[0]
idx = int(idx)
with lock:
if idx < len(queue)-1:
queue[idx], queue[idx+1] = queue[idx+1], queue[idx]
return update_queue_data()
def remove_task(selected_indices):
if not selected_indices or len(selected_indices) == 0:
return update_queue_data()
idx = selected_indices[0]
if isinstance(idx, list):
idx = idx[0]
idx = int(idx)
with lock:
if idx < len(queue):
if idx == 0:
wan_model._interrupt = True
del queue[idx]
return update_queue_data()
def update_queue_data():
with lock:
data = []
for item in queue:
truncated_prompt = (item['prompt'][:97] + '...') if len(item['prompt']) > 100 else item['prompt']
full_prompt = item['prompt'].replace('"', '&quot;')
prompt_cell = f'<span title="{full_prompt}">{truncated_prompt}</span>'
start_img_uri = pil_to_base64_uri(item.get('start_image_data'), format="jpeg", quality=70)
end_img_uri = pil_to_base64_uri(item.get('end_image_data'), format="jpeg", quality=70)
thumbnail_size = "50px"
start_img_md = ""
end_img_md = ""
if start_img_uri:
start_img_md = f'<img src="{start_img_uri}" alt="Start" style="max-width:{thumbnail_size}; max-height:{thumbnail_size}; display: block; margin: auto; object-fit: contain;" />'
if end_img_uri:
end_img_md = f'<img src="{end_img_uri}" alt="End" style="max-width:{thumbnail_size}; max-height:{thumbnail_size}; display: block; margin: auto; object-fit: contain;" />'
data.append([
item.get('status', "Starting"),
item.get('repeats', "0/0"),
item.get('progress', "0.0%"),
item.get('steps', ''),
item.get('time', '--'),
prompt_cell,
start_img_md,
end_img_md,
"",
"",
""
])
return data
def _parse_args():
parser = argparse.ArgumentParser(
description="Generate a video from a text prompt or image using Gradio")
parser.add_argument(
"--quantize-transformer",
action="store_true",
help="On the fly 'transformer' quantization"
)
parser.add_argument(
"--share",
action="store_true",
help="Create a shared URL to access webserver remotely"
)
parser.add_argument(
"--lock-config",
action="store_true",
help="Prevent modifying the configuration from the web interface"
)
parser.add_argument(
"--preload",
type=str,
default="0",
help="Megabytes of the diffusion model to preload in VRAM"
)
parser.add_argument(
"--multiple-images",
action="store_true",
help="Allow inputting multiple images with image to video"
)
parser.add_argument(
"--lora-dir-i2v",
type=str,
default="",
help="Path to a directory that contains Loras for i2v"
)
parser.add_argument(
"--lora-dir",
type=str,
default="",
help="Path to a directory that contains Loras"
)
parser.add_argument(
"--check-loras",
action="store_true",
help="Filter Loras that are not valid"
)
parser.add_argument(
"--lora-preset",
type=str,
default="",
help="Lora preset to preload"
)
parser.add_argument(
"--i2v-settings",
type=str,
default="i2v_settings.json",
help="Path to settings file for i2v"
)
parser.add_argument(
"--t2v-settings",
type=str,
default="t2v_settings.json",
help="Path to settings file for t2v"
)
# parser.add_argument(
# "--lora-preset-i2v",
# type=str,
# default="",
# help="Lora preset to preload for i2v"
# )
parser.add_argument(
"--profile",
type=str,
default=-1,
help="Profile No"
)
parser.add_argument(
"--verbose",
type=str,
default=1,
help="Verbose level"
)
parser.add_argument(
"--steps",
type=int,
default=0,
help="default denoising steps"
)
parser.add_argument(
"--frames",
type=int,
default=0,
help="default number of frames"
)
parser.add_argument(
"--seed",
type=int,
default=-1,
help="default generation seed"
)
parser.add_argument(
"--advanced",
action="store_true",
help="Access advanced options by default"
)
parser.add_argument(
"--server-port",
type=str,
default=0,
help="Server port"
)
parser.add_argument(
"--server-name",
type=str,
default="",
help="Server name"
)
parser.add_argument(
"--gpu",
type=str,
default="",
help="Default GPU Device"
)
parser.add_argument(
"--open-browser",
action="store_true",
help="open browser"
)
parser.add_argument(
"--t2v",
action="store_true",
help="text to video mode"
)
parser.add_argument(
"--i2v",
action="store_true",
help="image to video mode"
)
parser.add_argument(
"--t2v-14B",
action="store_true",
help="text to video mode 14B model"
)
parser.add_argument(
"--t2v-1-3B",
action="store_true",
help="text to video mode 1.3B model"
)
parser.add_argument(
"--i2v-1-3B",
action="store_true",
help="Fun InP image to video mode 1.3B model"
)
parser.add_argument(
"--i2v-14B",
action="store_true",
help="image to video mode 14B model"
)
parser.add_argument(
"--compile",
action="store_true",
help="Enable pytorch compilation"
)
parser.add_argument(
"--listen",
action="store_true",
help="Server accessible on local network"
)
# parser.add_argument(
# "--fast",
# action="store_true",
# help="use Fast model"
# )
# parser.add_argument(
# "--fastest",
# action="store_true",
# help="activate the best config"
# )
parser.add_argument(
"--attention",
type=str,
default="",
help="attention mode"
)
parser.add_argument(
"--vae-config",
type=str,
default="",
help="vae config mode"
)
args = parser.parse_args()
return args
def get_lora_dir(i2v):
lora_dir =args.lora_dir
if i2v and len(lora_dir)==0:
lora_dir =args.lora_dir_i2v
if len(lora_dir) > 0:
return lora_dir
root_lora_dir = "loras_i2v" if i2v else "loras"
if "1.3B" in (transformer_filename_i2v if i2v else transformer_filename_t2v) :
lora_dir_1_3B = os.path.join(root_lora_dir, "1.3B")
if os.path.isdir(lora_dir_1_3B ):
return lora_dir_1_3B
else:
lora_dir_14B = os.path.join(root_lora_dir, "14B")
if os.path.isdir(lora_dir_14B ):
return lora_dir_14B
return root_lora_dir
attention_modes_installed = get_attention_modes()
attention_modes_supported = get_supported_attention_modes()
args = _parse_args()
args.flow_reverse = True
# torch.backends.cuda.matmul.allow_fp16_accumulation = True
lock_ui_attention = False
lock_ui_transformer = False
lock_ui_compile = False
preload =int(args.preload)
force_profile_no = int(args.profile)
verbose_level = int(args.verbose)
quantizeTransformer = args.quantize_transformer
check_loras = args.check_loras ==1
advanced = args.advanced
transformer_choices_t2v=["ckpts/wan2.1_text2video_1.3B_bf16.safetensors", "ckpts/wan2.1_text2video_14B_bf16.safetensors", "ckpts/wan2.1_text2video_14B_quanto_int8.safetensors"]
transformer_choices_i2v=["ckpts/wan2.1_image2video_480p_14B_bf16.safetensors", "ckpts/wan2.1_image2video_480p_14B_quanto_int8.safetensors", "ckpts/wan2.1_image2video_720p_14B_bf16.safetensors", "ckpts/wan2.1_image2video_720p_14B_quanto_int8.safetensors", "ckpts/wan2.1_Fun_InP_1.3B_bf16.safetensors", "ckpts/wan2.1_Fun_InP_14B_bf16.safetensors", "ckpts/wan2.1_Fun_InP_14B_quanto_int8.safetensors", ]
text_encoder_choices = ["ckpts/models_t5_umt5-xxl-enc-bf16.safetensors", "ckpts/models_t5_umt5-xxl-enc-quanto_int8.safetensors"]
server_config_filename = "gradio_config.json"
if not Path(server_config_filename).is_file():
server_config = {"attention_mode" : "auto",
"transformer_filename": transformer_choices_t2v[0],
"transformer_filename_i2v": transformer_choices_i2v[1],
"text_encoder_filename" : text_encoder_choices[1],
"save_path": os.path.join(os.getcwd(), "gradio_outputs"),
"compile" : "",
"metadata_type": "metadata",
"default_ui": "t2v",
"boost" : 1,
"clear_file_list" : 0,
"vae_config": 0,
"profile" : profile_type.LowRAM_LowVRAM,
"reload_model": 2 }
with open(server_config_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(server_config))
else:
with open(server_config_filename, "r", encoding="utf-8") as reader:
text = reader.read()
server_config = json.loads(text)
def get_settings_file_name(i2v):
return args.i2v_settings if i2v else args.t2v_settings
def get_default_settings(filename, i2v):
def get_default_prompt(i2v):
if i2v:
return "Several giant wooly mammoths approach treading through a snowy meadow, their long wooly fur lightly blows in the wind as they walk, snow covered trees and dramatic snow capped mountains in the distance, mid afternoon light with wispy clouds and a sun high in the distance creates a warm glow, the low camera view is stunning capturing the large furry mammal with beautiful photography, depth of field."
else:
return "A large orange octopus is seen resting on the bottom of the ocean floor, blending in with the sandy and rocky terrain. Its tentacles are spread out around its body, and its eyes are closed. The octopus is unaware of a king crab that is crawling towards it from behind a rock, its claws raised and ready to attack. The crab is brown and spiny, with long legs and antennae. The scene is captured from a wide angle, showing the vastness and depth of the ocean. The water is clear and blue, with rays of sunlight filtering through. The shot is sharp and crisp, with a high dynamic range. The octopus and the crab are in focus, while the background is slightly blurred, creating a depth of field effect."
defaults_filename = get_settings_file_name(i2v)
if not Path(defaults_filename).is_file():
ui_defaults = {
"prompts": get_default_prompt(i2v),
"resolution": "832x480",
"video_length": 81,
"image_prompt_type" : 0,
"num_inference_steps": 30,
"seed": -1,
"repeat_generation": 1,
"multi_images_gen_type": 0,
"guidance_scale": 5.0,
"flow_shift": get_default_flow(filename, i2v),
"negative_prompt": "",
"activated_loras": [],
"loras_multipliers": "",
"tea_cache": 0.0,
"tea_cache_start_step_perc": 0,
"RIFLEx_setting": 0,
"slg_switch": 0,
"slg_layers": [9],
"slg_start_perc": 10,
"slg_end_perc": 90
}
with open(defaults_filename, "w", encoding="utf-8") as f:
json.dump(ui_defaults, f, indent=4)
else:
with open(defaults_filename, "r", encoding="utf-8") as f:
ui_defaults = json.load(f)
default_seed = args.seed
if default_seed > -1:
ui_defaults["seed"] = default_seed
default_number_frames = args.frames
if default_number_frames > 0:
ui_defaults["video_length"] = default_number_frames
default_number_steps = args.steps
if default_number_steps > 0:
ui_defaults["num_inference_steps"] = default_number_steps
return ui_defaults
transformer_filename_t2v = server_config["transformer_filename"]
transformer_filename_i2v = server_config.get("transformer_filename_i2v", transformer_choices_i2v[1])
text_encoder_filename = server_config["text_encoder_filename"]
attention_mode = server_config["attention_mode"]
if len(args.attention)> 0:
if args.attention in ["auto", "sdpa", "sage", "sage2", "flash", "xformers"]:
attention_mode = args.attention
lock_ui_attention = True
else:
raise Exception(f"Unknown attention mode '{args.attention}'")
profile = force_profile_no if force_profile_no >=0 else server_config["profile"]
compile = server_config.get("compile", "")
boost = server_config.get("boost", 1)
vae_config = server_config.get("vae_config", 0)
if len(args.vae_config) > 0:
vae_config = int(args.vae_config)
reload_needed = False
default_ui = server_config.get("default_ui", "t2v")
save_path = server_config.get("save_path", os.path.join(os.getcwd(), "gradio_outputs"))
use_image2video = default_ui != "t2v"
if args.t2v:
use_image2video = False
if args.i2v:
use_image2video = True
if args.t2v_14B:
use_image2video = False
if not "14B" in transformer_filename_t2v:
transformer_filename_t2v = transformer_choices_t2v[2]
lock_ui_transformer = False
if args.i2v_14B:
use_image2video = True
if not "14B" in transformer_filename_i2v:
transformer_filename_i2v = transformer_choices_t2v[3]
lock_ui_transformer = False
if args.t2v_1_3B:
transformer_filename_t2v = transformer_choices_t2v[0]
use_image2video = False
lock_ui_transformer = False
if args.i2v_1_3B:
transformer_filename_i2v = transformer_choices_i2v[4]
use_image2video = True
lock_ui_transformer = False
only_allow_edit_in_advanced = False
lora_preselected_preset = args.lora_preset
lora_preselected_preset_for_i2v = use_image2video
# if args.fast : #or args.fastest
# transformer_filename_t2v = transformer_choices_t2v[2]
# attention_mode="sage2" if "sage2" in attention_modes_supported else "sage"
# default_tea_cache = 0.15
# lock_ui_attention = True
# lock_ui_transformer = True
if args.compile: #args.fastest or
compile="transformer"
lock_ui_compile = True
model_filename = ""
lora_model_filename = ""
#attention_mode="sage"
#attention_mode="sage2"
#attention_mode="flash"
#attention_mode="sdpa"
#attention_mode="xformers"
# compile = "transformer"
def preprocess_loras(sd):
if not use_image2video:
return sd
new_sd = {}
first = next(iter(sd), None)
if first == None:
return sd
if not first.startswith("lora_unet_"):
return sd
print("Converting Lora Safetensors format to Lora Diffusers format")
alphas = {}
repl_list = ["cross_attn", "self_attn", "ffn"]
src_list = ["_" + k + "_" for k in repl_list]
tgt_list = ["." + k + "." for k in repl_list]
for k,v in sd.items():
k = k.replace("lora_unet_blocks_","diffusion_model.blocks.")
for s,t in zip(src_list, tgt_list):
k = k.replace(s,t)
k = k.replace("lora_up","lora_B")
k = k.replace("lora_down","lora_A")
if "alpha" in k:
alphas[k] = v
else:
new_sd[k] = v
new_alphas = {}
for k,v in new_sd.items():
if "lora_B" in k:
dim = v.shape[1]
elif "lora_A" in k:
dim = v.shape[0]
else:
continue
alpha_key = k[:-len("lora_X.weight")] +"alpha"
if alpha_key in alphas:
scale = alphas[alpha_key] / dim
new_alphas[alpha_key] = scale
else:
print(f"Lora alpha'{alpha_key}' is missing")
new_sd.update(new_alphas)
return new_sd
def download_models(transformer_filename, text_encoder_filename):
def computeList(filename):
pos = filename.rfind("/")
filename = filename[pos+1:]
return [filename]
from huggingface_hub import hf_hub_download, snapshot_download
repoId = "DeepBeepMeep/Wan2.1"
sourceFolderList = ["xlm-roberta-large", "", ]
fileList = [ [], ["Wan2.1_VAE_bf16.safetensors", "models_clip_open-clip-xlm-roberta-large-vit-huge-14-bf16.safetensors" ] + computeList(text_encoder_filename) + computeList(transformer_filename) ]
targetRoot = "ckpts/"
for sourceFolder, files in zip(sourceFolderList,fileList ):
if len(files)==0:
if not Path(targetRoot + sourceFolder).exists():
snapshot_download(repo_id=repoId, allow_patterns=sourceFolder +"/*", local_dir= targetRoot)
else:
for onefile in files:
if len(sourceFolder) > 0:
if not os.path.isfile(targetRoot + sourceFolder + "/" + onefile ):
hf_hub_download(repo_id=repoId, filename=onefile, local_dir = targetRoot, subfolder=sourceFolder)
else:
if not os.path.isfile(targetRoot + onefile ):
hf_hub_download(repo_id=repoId, filename=onefile, local_dir = targetRoot)
offload.default_verboseLevel = verbose_level
to_remove = ["models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth", "Wan2.1_VAE.pth"]
for file_name in to_remove:
file_name = os.path.join("ckpts",file_name)
if os.path.isfile(file_name):
try:
os.remove(file_name)
except:
pass
download_models(transformer_filename_i2v if use_image2video else transformer_filename_t2v, text_encoder_filename)
def sanitize_file_name(file_name, rep =""):
return file_name.replace("/",rep).replace("\\",rep).replace(":",rep).replace("|",rep).replace("?",rep).replace("<",rep).replace(">",rep).replace("\"",rep)
def extract_preset(lset_name, loras):
loras_choices = []
loras_choices_files = []
loras_mult_choices = ""
prompt =""
full_prompt =""
lset_name = sanitize_file_name(lset_name)
lora_dir = get_lora_dir(use_image2video)
if not lset_name.endswith(".lset"):
lset_name_filename = os.path.join(lora_dir, lset_name + ".lset" )
else:
lset_name_filename = os.path.join(lora_dir, lset_name )
error = ""
if not os.path.isfile(lset_name_filename):
error = f"Preset '{lset_name}' not found "
else:
missing_loras = []
with open(lset_name_filename, "r", encoding="utf-8") as reader:
text = reader.read()
lset = json.loads(text)
loras_choices_files = lset["loras"]
for lora_file in loras_choices_files:
choice = os.path.join(lora_dir, lora_file)
if choice not in loras:
missing_loras.append(lora_file)
else:
loras_choice_no = loras.index(choice)
loras_choices.append(str(loras_choice_no))
if len(missing_loras) > 0:
error = f"Unable to apply Lora preset '{lset_name} because the following Loras files are missing or invalid: {missing_loras}"
loras_mult_choices = lset["loras_mult"]
prompt = lset.get("prompt", "")
full_prompt = lset.get("full_prompt", False)
return loras_choices, loras_mult_choices, prompt, full_prompt, error
def setup_loras(i2v, transformer, lora_dir, lora_preselected_preset, split_linear_modules_map = None):
loras =[]
loras_names = []
default_loras_choices = []
default_loras_multis_str = ""
loras_presets = []
default_lora_preset = ""
default_lora_preset_prompt = ""
from pathlib import Path
lora_dir = get_lora_dir(i2v)
if lora_dir != None :
if not os.path.isdir(lora_dir):
raise Exception("--lora-dir should be a path to a directory that contains Loras")
if lora_dir != None:
import glob
dir_loras = glob.glob( os.path.join(lora_dir , "*.sft") ) + glob.glob( os.path.join(lora_dir , "*.safetensors") )
dir_loras.sort()
loras += [element for element in dir_loras if element not in loras ]
dir_presets = glob.glob( os.path.join(lora_dir , "*.lset") )
dir_presets.sort()
loras_presets = [ Path(Path(file_path).parts[-1]).stem for file_path in dir_presets]
if transformer !=None:
loras = offload.load_loras_into_model(transformer, loras, activate_all_loras=False, check_only= True, preprocess_sd=preprocess_loras, split_linear_modules_map = split_linear_modules_map) #lora_multiplier,
if len(loras) > 0:
loras_names = [ Path(lora).stem for lora in loras ]
if len(lora_preselected_preset) > 0:
if not os.path.isfile(os.path.join(lora_dir, lora_preselected_preset + ".lset")):
raise Exception(f"Unknown preset '{lora_preselected_preset}'")
default_lora_preset = lora_preselected_preset
default_loras_choices, default_loras_multis_str, default_lora_preset_prompt, _ , error = extract_preset(default_lora_preset, loras)
if len(error) > 0:
print(error[:200])
return loras, loras_names, loras_presets, default_loras_choices, default_loras_multis_str, default_lora_preset_prompt, default_lora_preset
def load_t2v_model(model_filename, value):
cfg = WAN_CONFIGS['t2v-14B']
# cfg = WAN_CONFIGS['t2v-1.3B']
print(f"Loading '{model_filename}' model...")
wan_model = wan.WanT2V(
config=cfg,
checkpoint_dir="ckpts",
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
model_filename=model_filename,
text_encoder_filename= text_encoder_filename
)
pipe = {"transformer": wan_model.model, "text_encoder" : wan_model.text_encoder.model, "vae": wan_model.vae.model }
return wan_model, pipe
def load_i2v_model(model_filename, value):
print(f"Loading '{model_filename}' model...")
if value == '720P':
cfg = WAN_CONFIGS['i2v-14B']
wan_model = wan.WanI2V(
config=cfg,
checkpoint_dir="ckpts",
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
i2v720p= True,
model_filename=model_filename,
text_encoder_filename=text_encoder_filename
)
pipe = {"transformer": wan_model.model, "text_encoder" : wan_model.text_encoder.model, "text_encoder_2": wan_model.clip.model, "vae": wan_model.vae.model } #
elif value == '480P':
cfg = WAN_CONFIGS['i2v-14B']
wan_model = wan.WanI2V(
config=cfg,
checkpoint_dir="ckpts",
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
i2v720p= False,
model_filename=model_filename,
text_encoder_filename=text_encoder_filename
)
pipe = {"transformer": wan_model.model, "text_encoder" : wan_model.text_encoder.model, "text_encoder_2": wan_model.clip.model, "vae": wan_model.vae.model } #
else:
raise Exception("Model i2v {value} not supported")
return wan_model, pipe
def model_needed(i2v):
return transformer_filename_i2v if i2v else transformer_filename_t2v
def load_models(i2v):
global model_filename
model_filename = model_needed(i2v)
download_models(model_filename, text_encoder_filename)
if i2v:
res720P = "720p" in model_filename
wan_model, pipe = load_i2v_model(model_filename, "720P" if res720P else "480P")
else:
wan_model, pipe = load_t2v_model(model_filename, "")
kwargs = { "extraModelsToQuantize": None}
if profile == 2 or profile == 4:
kwargs["budgets"] = { "transformer" : 100 if preload == 0 else preload, "text_encoder" : 100, "*" : 1000 }
# if profile == 4:
# kwargs["partialPinning"] = True
elif profile == 3:
kwargs["budgets"] = { "*" : "70%" }
offloadobj = offload.profile(pipe, profile_no= profile, compile = compile, quantizeTransformer = quantizeTransformer, loras = "transformer", **kwargs)
if len(args.gpu) > 0:
torch.set_default_device(args.gpu)
return wan_model, offloadobj, pipe["transformer"]
wan_model, offloadobj, transformer = load_models(use_image2video)
if check_loras:
setup_loras(use_image2video, transformer, get_lora_dir(use_image2video), "", None)
exit()
del transformer
gen_in_progress = False
def get_auto_attention():
for attn in ["sage2","sage","sdpa"]:
if attn in attention_modes_supported:
return attn
return "sdpa"
def get_default_flow(filename, i2v):
return 7.0 if "480p" in filename and i2v else 5.0
def get_model_name(model_filename):
if "Fun" in model_filename:
model_name = "Fun InP image2video"
model_name += " 14B" if "14B" in model_filename else " 1.3B"
elif "image" in model_filename:
model_name = "Wan2.1 image2video"
model_name += " 720p" if "720p" in model_filename else " 480p"
else:
model_name = "Wan2.1 text2video"
model_name += " 14B" if "14B" in model_filename else " 1.3B"
return model_name
def generate_header(model_filename, compile, attention_mode):
header = "<div class='title-with-lines'><div class=line></div><h2>"
model_name = get_model_name(model_filename)
header += model_name
header += " (attention mode: " + (attention_mode if attention_mode!="auto" else "auto/" + get_auto_attention() )
if attention_mode not in attention_modes_installed:
header += " -NOT INSTALLED-"
elif attention_mode not in attention_modes_supported:
header += " -NOT SUPPORTED-"
if compile:
header += ", pytorch compilation ON"
header += ") </h2><div class=line></div> "
return header
def apply_changes( state,
transformer_t2v_choice,
transformer_i2v_choice,
text_encoder_choice,
save_path_choice,
attention_choice,
compile_choice,
profile_choice,
vae_config_choice,
metadata_choice,
default_ui_choice ="t2v",
boost_choice = 1,
clear_file_list = 0,
reload_choice = 1
):
if args.lock_config:
return
if gen_in_progress:
yield "<DIV ALIGN=CENTER>Unable to change config when a generation is in progress</DIV>"
return
global offloadobj, wan_model, loras, loras_names, default_loras_choices, default_loras_multis_str, default_lora_preset_prompt, default_lora_preset, loras_presets
server_config = {"attention_mode" : attention_choice,
"transformer_filename": transformer_choices_t2v[transformer_t2v_choice],
"transformer_filename_i2v": transformer_choices_i2v[transformer_i2v_choice],
"text_encoder_filename" : text_encoder_choices[text_encoder_choice],
"save_path" : save_path_choice,
"compile" : compile_choice,
"profile" : profile_choice,
"vae_config" : vae_config_choice,
"metadata_choice": metadata_choice,
"default_ui" : default_ui_choice,
"boost" : boost_choice,
"clear_file_list" : clear_file_list,
"reload_model" : reload_choice,
}
if Path(server_config_filename).is_file():
with open(server_config_filename, "r", encoding="utf-8") as reader:
text = reader.read()
old_server_config = json.loads(text)
if lock_ui_transformer:
server_config["transformer_filename"] = old_server_config["transformer_filename"]
server_config["transformer_filename_i2v"] = old_server_config["transformer_filename_i2v"]
if lock_ui_attention:
server_config["attention_mode"] = old_server_config["attention_mode"]
if lock_ui_compile:
server_config["compile"] = old_server_config["compile"]
with open(server_config_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(server_config))
changes = []
for k, v in server_config.items():
v_old = old_server_config.get(k, None)
if v != v_old:
changes.append(k)
global attention_mode, profile, compile, transformer_filename_t2v, transformer_filename_i2v, text_encoder_filename, vae_config, boost, lora_dir, reload_needed
attention_mode = server_config["attention_mode"]
profile = server_config["profile"]
compile = server_config["compile"]
transformer_filename_t2v = server_config["transformer_filename"]
transformer_filename_i2v = server_config["transformer_filename_i2v"]
text_encoder_filename = server_config["text_encoder_filename"]
vae_config = server_config["vae_config"]
boost = server_config["boost"]
if all(change in ["attention_mode", "vae_config", "default_ui", "boost", "save_path", "metadata_choice", "clear_file_list"] for change in changes ):
pass
else:
reload_needed = True
yield "<DIV ALIGN=CENTER>The new configuration has been succesfully applied</DIV>"
from moviepy.editor import ImageSequenceClip
import numpy as np
def save_video(final_frames, output_path, fps=24):
assert final_frames.ndim == 4 and final_frames.shape[3] == 3, f"invalid shape: {final_frames} (need t h w c)"
if final_frames.dtype != np.uint8:
final_frames = (final_frames * 255).astype(np.uint8)
ImageSequenceClip(list(final_frames), fps=fps).write_videofile(output_path, verbose= False, logger = None)
def build_callback(taskid, state, pipe, num_inference_steps, repeats):
start_time = time.time()
def update_progress(step_idx, _):
with tracker_lock:
step_idx += 1
if state.get("abort", False):
# pipe._interrupt = True
phase = "Aborting"
elif step_idx == num_inference_steps:
phase = "VAE Decoding"
else:
phase = "Denoising"
elapsed = time.time() - start_time
progress_tracker[taskid] = {
'current_step': step_idx,
'total_steps': num_inference_steps,
'start_time': start_time,
'last_update': time.time(),
'repeats': repeats,
'status': phase
}
return update_progress
def refresh_gallery(state):
return state
def finalize_gallery(state):
choice = 0
if "in_progress" in state:
del state["in_progress"]
choice = state.get("selected",0)
if state.get("last_selected", True):
file_list = state.get("file_list", [])
choice = len(file_list) - 1
state["extra_orders"] = 0
time.sleep(0.2)
global gen_in_progress
gen_in_progress = False
return gr.Gallery(selected_index=choice), gr.Button(interactive=True), gr.Button(visible=False), gr.Checkbox(visible=False), gr.Text(visible=False, value="")
def select_video(state , event_data: gr.EventData):
data= event_data._data
if data!=None:
choice = data.get("index",0)
file_list = state.get("file_list", [])
state["last_selected"] = (choice + 1) >= len(file_list)
state["selected"] = choice
return
def expand_slist(slist, num_inference_steps ):
new_slist= []
inc = len(slist) / num_inference_steps
pos = 0
for i in range(num_inference_steps):
new_slist.append(slist[ int(pos)])
pos += inc
return new_slist
def generate_video(
task_id,
prompt,
negative_prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
repeat_generation,
multi_images_gen_type,
tea_cache,
tea_cache_start_step_perc,
loras_choices,
loras_mult_choices,
image_prompt_type,
image_to_continue,
image_to_end,
video_to_continue,
max_frames,
RIFLEx_setting,
slg_switch,
slg_layers,
slg_start,
slg_end,
cfg_star_switch,
cfg_zero_step,
state,
image2video,
progress=gr.Progress() #track_tqdm= True
):
global wan_model, offloadobj, reload_needed, last_model_type
file_model_needed = model_needed(image2video)
with lock:
queue_not_empty = len(queue) > 0
if(last_model_type != image2video and (queue_not_empty or server_config.get("reload_model",1) == 2) and (file_model_needed != model_filename or reload_needed)):
del wan_model
if offloadobj is not None:
offloadobj.release()
del offloadobj
gc.collect()
print(f"Loading model {get_model_name(file_model_needed)}...")
wan_model, offloadobj, trans = load_models(image2video)
print(f"Model loaded")
reload_needed= False
import numpy as np
import tempfile
if wan_model == None:
raise gr.Error("Unable to generate a Video while a new configuration is being applied.")
if attention_mode == "auto":
attn = get_auto_attention()
elif attention_mode in attention_modes_supported:
attn = attention_mode
else:
gr.Info(f"You have selected attention mode '{attention_mode}'. However it is not installed or supported on your system. You should either install it or switch to the default 'sdpa' attention.")
return
#if state.get("validate_success",0) != 1:
# return
raw_resolution = resolution
width, height = resolution.split("x")
width, height = int(width), int(height)
if slg_switch == 0:
slg_layers = None
if image2video:
if "480p" in model_filename and not "Fun" in model_filename and width * height > 848*480:
gr.Info("You must use the 720P image to video model to generate videos with a resolution equivalent to 720P")
return
resolution = str(width) + "*" + str(height)
if resolution not in ['720*1280', '1280*720', '480*832', '832*480']:
gr.Info(f"Resolution {resolution} not supported by image 2 video")
return
if "1.3B" in model_filename and width * height > 848*480:
gr.Info("You must use the 14B model to generate videos with a resolution equivalent to 720P")
return
offload.shared_state["_attention"] = attn
# VAE Tiling
device_mem_capacity = torch.cuda.get_device_properties(0).total_memory / 1048576
if vae_config == 0:
if device_mem_capacity >= 24000:
use_vae_config = 1
elif device_mem_capacity >= 8000:
use_vae_config = 2
else:
use_vae_config = 3
else:
use_vae_config = vae_config
if use_vae_config == 1:
VAE_tile_size = 0
elif use_vae_config == 2:
VAE_tile_size = 256
else:
VAE_tile_size = 128
trans = wan_model.model
global gen_in_progress
gen_in_progress = True
temp_filename = None
if image2video:
if video_to_continue != None and len(video_to_continue) >0 :
input_image_or_video_path = video_to_continue
# pipeline.num_input_frames = max_frames
# pipeline.max_frames = max_frames
else:
input_image_or_video_path = None
loras = state["loras"]
if len(loras) > 0:
def is_float(element: any) -> bool:
if element is None:
return False
try:
float(element)
return True
except ValueError:
return False
list_mult_choices_nums = []
if len(loras_mult_choices) > 0:
loras_mult_choices_list = loras_mult_choices.replace("\r", "").split("\n")
loras_mult_choices_list = [multi for multi in loras_mult_choices_list if len(multi)>0 and not multi.startswith("#")]
loras_mult_choices = " ".join(loras_mult_choices_list)
list_mult_choices_str = loras_mult_choices.split(" ")
for i, mult in enumerate(list_mult_choices_str):
mult = mult.strip()
if "," in mult:
multlist = mult.split(",")
slist = []
for smult in multlist:
if not is_float(smult):
raise gr.Error(f"Lora sub value no {i+1} ({smult}) in Multiplier definition '{multlist}' is invalid")
slist.append(float(smult))
slist = expand_slist(slist, num_inference_steps )
list_mult_choices_nums.append(slist)
else:
if not is_float(mult):
raise gr.Error(f"Lora Multiplier no {i+1} ({mult}) is invalid")
list_mult_choices_nums.append(float(mult))
if len(list_mult_choices_nums ) < len(loras_choices):
list_mult_choices_nums += [1.0] * ( len(loras_choices) - len(list_mult_choices_nums ) )
loras_selected = [ lora for i, lora in enumerate(loras) if str(i) in loras_choices]
pinnedLora = profile !=5 #False # # #
offload.load_loras_into_model(trans, loras_selected, list_mult_choices_nums, activate_all_loras=True, preprocess_sd=preprocess_loras, pinnedLora=pinnedLora, split_linear_modules_map = None)
errors = trans._loras_errors
if len(errors) > 0:
error_files = [msg for _ , msg in errors]
raise gr.Error("Error while loading Loras: " + ", ".join(error_files))
seed = None if seed == -1 else seed
# negative_prompt = "" # not applicable in the inference
if "abort" in state:
del state["abort"]
state["in_progress"] = True
enable_RIFLEx = RIFLEx_setting == 0 and video_length > (6* 16) or RIFLEx_setting == 1
# VAE Tiling
device_mem_capacity = torch.cuda.get_device_properties(0).total_memory / 1048576
joint_pass = boost ==1 #and profile != 1 and profile != 3
# TeaCache
trans.enable_teacache = tea_cache > 0
if trans.enable_teacache:
trans.teacache_multiplier = tea_cache
trans.rel_l1_thresh = 0
trans.teacache_start_step = int(tea_cache_start_step_perc*num_inference_steps/100)
if image2video:
if '480p' in transformer_filename_i2v:
# teacache_thresholds = [0.13, .19, 0.26]
trans.coefficients = [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01]
elif '720p' in transformer_filename_i2v:
teacache_thresholds = [0.18, 0.2 , 0.3]
trans.coefficients = [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683]
else:
raise gr.Error("Teacache not supported for this model")
else:
if '1.3B' in transformer_filename_t2v:
# teacache_thresholds= [0.05, 0.07, 0.08]
trans.coefficients = [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01]
elif '14B' in transformer_filename_t2v:
# teacache_thresholds = [0.14, 0.15, 0.2]
trans.coefficients = [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404]
else:
raise gr.Error("Teacache not supported for this model")
import random
if seed == None or seed <0:
seed = random.randint(0, 999999999)
global file_list
clear_file_list = server_config.get("clear_file_list", 0)
file_list = state.get("file_list", [])
if clear_file_list > 0:
file_list_current_size = len(file_list)
keep_file_from = max(file_list_current_size - clear_file_list, 0)
files_removed = keep_file_from
choice = state.get("selected",0)
choice = max(choice- files_removed, 0)
file_list = file_list[ keep_file_from: ]
else:
file_list = []
choice = 0
state["selected"] = choice
state["file_list"] = file_list
global save_path
os.makedirs(save_path, exist_ok=True)
video_no = 0
abort = False
repeats = f"{video_no}/{repeat_generation}"
callback = build_callback(task_id, state, trans, num_inference_steps, repeats)
offload.shared_state["callback"] = callback
gc.collect()
torch.cuda.empty_cache()
wan_model._interrupt = False
for i in range(repeat_generation):
try:
with tracker_lock:
start_time = time.time()
progress_tracker[task_id] = {
'current_step': 0,
'total_steps': num_inference_steps,
'start_time': start_time,
'last_update': start_time,
'repeats': f"{video_no}/{repeat_generation}",
'status': "Encoding Prompt"
}
if trans.enable_teacache:
trans.teacache_counter = 0
trans.num_steps = num_inference_steps
trans.teacache_skipped_steps = 0
trans.previous_residual_uncond = None
trans.previous_residual_cond = None
video_no += 1
if image2video:
samples = wan_model.generate(
prompt,
image_to_continue.convert('RGB'),
image_to_end.convert('RGB') if image_to_end != None else None,
frame_num=(video_length // 4)* 4 + 1,
max_area=MAX_AREA_CONFIGS[resolution],
shift=flow_shift,
sampling_steps=num_inference_steps,
guide_scale=guidance_scale,
n_prompt=negative_prompt,
seed=seed,
offload_model=False,
callback=callback,
enable_RIFLEx = enable_RIFLEx,
VAE_tile_size = VAE_tile_size,
joint_pass = joint_pass,
slg_layers = slg_layers,
slg_start = slg_start/100,
slg_end = slg_end/100,
cfg_star_switch = cfg_star_switch,
cfg_zero_step = cfg_zero_step,
add_frames_for_end_image = not "Fun" in transformer_filename_i2v
)
else:
samples = wan_model.generate(
prompt,
frame_num=(video_length // 4)* 4 + 1,
size=(width, height),
shift=flow_shift,
sampling_steps=num_inference_steps,
guide_scale=guidance_scale,
n_prompt=negative_prompt,
seed=seed,
offload_model=False,
callback=callback,
enable_RIFLEx = enable_RIFLEx,
VAE_tile_size = VAE_tile_size,
joint_pass = joint_pass,
slg_layers = slg_layers,
slg_start = slg_start/100,
slg_end = slg_end/100,
cfg_star_switch = cfg_star_switch,
cfg_zero_step = cfg_zero_step,
)
except Exception as e:
gen_in_progress = False
if temp_filename!= None and os.path.isfile(temp_filename):
os.remove(temp_filename)
offload.last_offload_obj.unload_all()
offload.unload_loras_from_model(trans)
# if compile:
# cache_size = torch._dynamo.config.cache_size_limit
# torch.compiler.reset()
# torch._dynamo.config.cache_size_limit = cache_size
gc.collect()
torch.cuda.empty_cache()
s = str(e)
keyword_list = ["vram", "VRAM", "memory","allocat"]
VRAM_crash= False
if any( keyword in s for keyword in keyword_list):
VRAM_crash = True
else:
stack = traceback.extract_stack(f=None, limit=5)
for frame in stack:
if any( keyword in frame.name for keyword in keyword_list):
VRAM_crash = True
break
state["prompt"] = ""
if VRAM_crash:
raise gr.Error("The generation of the video has encountered an error: it is likely that you have unsufficient VRAM and you should therefore reduce the video resolution or its number of frames.")
else:
raise gr.Error(f"The generation of the video has encountered an error, please check your terminal for more information. '{s}'")
finally:
with tracker_lock:
if task_id in progress_tracker:
del progress_tracker[task_id]
if trans.enable_teacache:
print(f"Teacache Skipped Steps:{trans.teacache_skipped_steps}/{num_inference_steps}" )
trans.previous_residual_uncond = None
trans.previous_residual_cond = None
if samples != None:
samples = samples.to("cpu")
offload.last_offload_obj.unload_all()
gc.collect()
torch.cuda.empty_cache()
if samples == None:
end_time = time.time()
abort = True
state["prompt"] = ""
print(f"Video generation was aborted. Total Generation Time: {end_time-start_time:.1f}s")
else:
sample = samples.cpu()
# video = rearrange(sample.cpu().numpy(), "c t h w -> t h w c")
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%Hh%Mm%Ss")
if os.name == 'nt':
file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:50]).strip()}.mp4"
else:
file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:100]).strip()}.mp4"
video_path = os.path.join(save_path, file_name)
cache_video(
tensor=sample[None],
save_file=video_path,
fps=16,
nrow=1,
normalize=True,
value_range=(-1, 1))
configs = get_settings_dict(state, use_image2video, prompt, 0 if image_to_end == None else 1 , video_length, raw_resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
loras_mult_choices, tea_cache , tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers, slg_start, slg_end, cfg_star_switch, cfg_zero_step)
metadata_choice = server_config.get("metadata_choice","metadata")
if metadata_choice == "json":
with open(video_path.replace('.mp4', '.json'), 'w') as f:
json.dump(configs, f, indent=4)
elif metadata_choice == "metadata":
from mutagen.mp4 import MP4
file = MP4(video_path)
file.tags['©cmt'] = [json.dumps(configs)]
file.save()
print(f"New video saved to Path: "+video_path)
file_list.append(video_path)
state['update_gallery'] = True
seed += 1
last_model_type = image2video
if temp_filename!= None and os.path.isfile(temp_filename):
os.remove(temp_filename)
gen_in_progress = False
offload.unload_loras_from_model(trans)
def get_new_preset_msg(advanced = True):
if advanced:
return "Enter here a Name for a Lora Preset or Choose one in the List"
else:
return "Choose a Lora Preset in this List to Apply a Special Effect"
def validate_delete_lset(lset_name):
if len(lset_name) == 0 or lset_name == get_new_preset_msg(True) or lset_name == get_new_preset_msg(False):
gr.Info(f"Choose a Preset to delete")
return gr.Button(visible= True), gr.Checkbox(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Button(visible= False)
else:
return gr.Button(visible= False), gr.Checkbox(visible= False), gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= True), gr.Button(visible= True)
def validate_save_lset(lset_name):
if len(lset_name) == 0 or lset_name == get_new_preset_msg(True) or lset_name == get_new_preset_msg(False):
gr.Info("Please enter a name for the preset")
return gr.Button(visible= True), gr.Checkbox(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Button(visible= False),gr.Checkbox(visible= False)
else:
return gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= True), gr.Button(visible= True),gr.Checkbox(visible= True)
def cancel_lset():
return gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= False), gr.Checkbox(visible= False)
def save_lset(state, lset_name, loras_choices, loras_mult_choices, prompt, save_lset_prompt_cbox):
loras_presets = state["loras_presets"]
loras = state["loras"]
if state.get("validate_success",0) == 0:
pass
if len(lset_name) == 0 or lset_name == get_new_preset_msg(True) or lset_name == get_new_preset_msg(False):
gr.Info("Please enter a name for the preset")
lset_choices =[("Please enter a name for a Lora Preset","")]
else:
lset_name = sanitize_file_name(lset_name)
loras_choices_files = [ Path(loras[int(choice_no)]).parts[-1] for choice_no in loras_choices ]
lset = {"loras" : loras_choices_files, "loras_mult" : loras_mult_choices}
if save_lset_prompt_cbox!=1:
prompts = prompt.replace("\r", "").split("\n")
prompts = [prompt for prompt in prompts if len(prompt)> 0 and prompt.startswith("#")]
prompt = "\n".join(prompts)
if len(prompt) > 0:
lset["prompt"] = prompt
lset["full_prompt"] = save_lset_prompt_cbox ==1
lset_name_filename = lset_name + ".lset"
full_lset_name_filename = os.path.join(get_lora_dir(use_image2video), lset_name_filename)
with open(full_lset_name_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(lset, indent=4))
if lset_name in loras_presets:
gr.Info(f"Lora Preset '{lset_name}' has been updated")
else:
gr.Info(f"Lora Preset '{lset_name}' has been created")
loras_presets.append(Path(Path(lset_name_filename).parts[-1]).stem )
lset_choices = [ ( preset, preset) for preset in loras_presets ]
lset_choices.append( (get_new_preset_msg(), ""))
state["loras_presets"] = loras_presets
return gr.Dropdown(choices=lset_choices, value= lset_name), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Button(visible= False), gr.Checkbox(visible= False)
def delete_lset(state, lset_name):
loras_presets = state["loras_presets"]
lset_name_filename = os.path.join( get_lora_dir(use_image2video), sanitize_file_name(lset_name) + ".lset" )
if len(lset_name) > 0 and lset_name != get_new_preset_msg(True) and lset_name != get_new_preset_msg(False):
if not os.path.isfile(lset_name_filename):
raise gr.Error(f"Preset '{lset_name}' not found ")
os.remove(lset_name_filename)
pos = loras_presets.index(lset_name)
gr.Info(f"Lora Preset '{lset_name}' has been deleted")
loras_presets.remove(lset_name)
else:
pos = len(loras_presets)
gr.Info(f"Choose a Preset to delete")
state["loras_presets"] = loras_presets
lset_choices = [ (preset, preset) for preset in loras_presets]
lset_choices.append((get_new_preset_msg(), ""))
return gr.Dropdown(choices=lset_choices, value= lset_choices[pos][1]), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Checkbox(visible= False)
def refresh_lora_list(state, lset_name, loras_choices):
loras_names = state["loras_names"]
prev_lora_names_selected = [ loras_names[int(i)] for i in loras_choices]
loras, loras_names, loras_presets, _, _, _, _ = setup_loras(use_image2video, None, get_lora_dir(use_image2video), lora_preselected_preset, None)
state["loras"] = loras
state["loras_names"] = loras_names
state["loras_presets"] = loras_presets
gc.collect()
new_loras_choices = [ (loras_name, str(i)) for i,loras_name in enumerate(loras_names)]
new_loras_dict = { loras_name: str(i) for i,loras_name in enumerate(loras_names) }
lora_names_selected = []
for lora in prev_lora_names_selected:
lora_id = new_loras_dict.get(lora, None)
if lora_id!= None:
lora_names_selected.append(lora_id)
lset_choices = [ (preset, preset) for preset in loras_presets]
lset_choices.append((get_new_preset_msg( state["advanced"]), ""))
if lset_name in loras_presets:
pos = loras_presets.index(lset_name)
else:
pos = len(loras_presets)
lset_name =""
errors = getattr(wan_model.model, "_loras_errors", "")
if errors !=None and len(errors) > 0:
error_files = [path for path, _ in errors]
gr.Info("Error while refreshing Lora List, invalid Lora files: " + ", ".join(error_files))
else:
gr.Info("Lora List has been refreshed")
return gr.Dropdown(choices=lset_choices, value= lset_choices[pos][1]), gr.Dropdown(choices=new_loras_choices, value= lora_names_selected)
def apply_lset(state, wizard_prompt_activated, lset_name, loras_choices, loras_mult_choices, prompt):
state["apply_success"] = 0
if len(lset_name) == 0 or lset_name== get_new_preset_msg(True) or lset_name== get_new_preset_msg(False):
gr.Info("Please choose a preset in the list or create one")
else:
loras = state["loras"]
loras_choices, loras_mult_choices, preset_prompt, full_prompt, error = extract_preset(lset_name, loras)
if len(error) > 0:
gr.Info(error)
else:
if full_prompt:
prompt = preset_prompt
elif len(preset_prompt) > 0:
prompts = prompt.replace("\r", "").split("\n")
prompts = [prompt for prompt in prompts if len(prompt)>0 and not prompt.startswith("#")]
prompt = "\n".join(prompts)
prompt = preset_prompt + '\n' + prompt
gr.Info(f"Lora Preset '{lset_name}' has been applied")
state["apply_success"] = 1
wizard_prompt_activated = "on"
return wizard_prompt_activated, loras_choices, loras_mult_choices, prompt
def extract_prompt_from_wizard(state, variables_names, prompt, wizard_prompt, allow_null_values, *args):
prompts = wizard_prompt.replace("\r" ,"").split("\n")
new_prompts = []
macro_already_written = False
for prompt in prompts:
if not macro_already_written and not prompt.startswith("#") and "{" in prompt and "}" in prompt:
variables = variables_names.split("\n")
values = args[:len(variables)]
macro = "! "
for i, (variable, value) in enumerate(zip(variables, values)):
if len(value) == 0 and not allow_null_values:
return prompt, "You need to provide a value for '" + variable + "'"
sub_values= [ "\"" + sub_value + "\"" for sub_value in value.split("\n") ]
value = ",".join(sub_values)
if i>0:
macro += " : "
macro += "{" + variable + "}"+ f"={value}"
if len(variables) > 0:
macro_already_written = True
new_prompts.append(macro)
new_prompts.append(prompt)
else:
new_prompts.append(prompt)
prompt = "\n".join(new_prompts)
return prompt, ""
def validate_wizard_prompt(state, wizard_prompt_activated, wizard_variables_names, prompt, wizard_prompt, *args):
state["validate_success"] = 0
if wizard_prompt_activated != "on":
state["validate_success"] = 1
return prompt
prompt, errors = extract_prompt_from_wizard(state, wizard_variables_names, prompt, wizard_prompt, False, *args)
if len(errors) > 0:
gr.Info(errors)
return prompt
state["validate_success"] = 1
return prompt
def fill_prompt_from_wizard(state, wizard_prompt_activated, wizard_variables_names, prompt, wizard_prompt, *args):
if wizard_prompt_activated == "on":
prompt, errors = extract_prompt_from_wizard(state, wizard_variables_names, prompt, wizard_prompt, True, *args)
if len(errors) > 0:
gr.Info(errors)
wizard_prompt_activated = "off"
return wizard_prompt_activated, "", gr.Textbox(visible= True, value =prompt) , gr.Textbox(visible= False), gr.Column(visible = True), *[gr.Column(visible = False)] * 2, *[gr.Textbox(visible= False)] * PROMPT_VARS_MAX
def extract_wizard_prompt(prompt):
variables = []
values = {}
prompts = prompt.replace("\r" ,"").split("\n")
if sum(prompt.startswith("!") for prompt in prompts) > 1:
return "", variables, values, "Prompt is too complex for basic Prompt editor, switching to Advanced Prompt"
new_prompts = []
errors = ""
for prompt in prompts:
if prompt.startswith("!"):
variables, errors = prompt_parser.extract_variable_names(prompt)
if len(errors) > 0:
return "", variables, values, "Error parsing Prompt templace: " + errors
if len(variables) > PROMPT_VARS_MAX:
return "", variables, values, "Prompt is too complex for basic Prompt editor, switching to Advanced Prompt"
values, errors = prompt_parser.extract_variable_values(prompt)
if len(errors) > 0:
return "", variables, values, "Error parsing Prompt templace: " + errors
else:
variables_extra, errors = prompt_parser.extract_variable_names(prompt)
if len(errors) > 0:
return "", variables, values, "Error parsing Prompt templace: " + errors
variables += variables_extra
variables = [var for pos, var in enumerate(variables) if var not in variables[:pos]]
if len(variables) > PROMPT_VARS_MAX:
return "", variables, values, "Prompt is too complex for basic Prompt editor, switching to Advanced Prompt"
new_prompts.append(prompt)
wizard_prompt = "\n".join(new_prompts)
return wizard_prompt, variables, values, errors
def fill_wizard_prompt(state, wizard_prompt_activated, prompt, wizard_prompt):
def get_hidden_textboxes(num = PROMPT_VARS_MAX ):
return [gr.Textbox(value="", visible=False)] * num
hidden_column = gr.Column(visible = False)
visible_column = gr.Column(visible = True)
wizard_prompt_activated = "off"
if state["advanced"] or state.get("apply_success") != 1:
return wizard_prompt_activated, gr.Text(), prompt, wizard_prompt, gr.Column(), gr.Column(), hidden_column, *get_hidden_textboxes()
prompt_parts= []
wizard_prompt, variables, values, errors = extract_wizard_prompt(prompt)
if len(errors) > 0:
gr.Info( errors )
return wizard_prompt_activated, "", gr.Textbox(prompt, visible=True), gr.Textbox(wizard_prompt, visible=False), visible_column, *[hidden_column] * 2, *get_hidden_textboxes()
for variable in variables:
value = values.get(variable, "")
prompt_parts.append(gr.Textbox( placeholder=variable, info= variable, visible= True, value= "\n".join(value) ))
any_macro = len(variables) > 0
prompt_parts += get_hidden_textboxes(PROMPT_VARS_MAX-len(prompt_parts))
variables_names= "\n".join(variables)
wizard_prompt_activated = "on"
return wizard_prompt_activated, variables_names, gr.Textbox(prompt, visible = False), gr.Textbox(wizard_prompt, visible = True), hidden_column, visible_column, visible_column if any_macro else hidden_column, *prompt_parts
def switch_prompt_type(state, wizard_prompt_activated_var, wizard_variables_names, prompt, wizard_prompt, *prompt_vars):
if state["advanced"]:
return fill_prompt_from_wizard(state, wizard_prompt_activated_var, wizard_variables_names, prompt, wizard_prompt, *prompt_vars)
else:
state["apply_success"] = 1
return fill_wizard_prompt(state, wizard_prompt_activated_var, prompt, wizard_prompt)
visible= False
def switch_advanced(state, new_advanced, lset_name):
state["advanced"] = new_advanced
loras_presets = state["loras_presets"]
lset_choices = [ (preset, preset) for preset in loras_presets]
lset_choices.append((get_new_preset_msg(new_advanced), ""))
if lset_name== get_new_preset_msg(True) or lset_name== get_new_preset_msg(False) or lset_name=="":
lset_name = get_new_preset_msg(new_advanced)
if only_allow_edit_in_advanced:
return gr.Row(visible=new_advanced), gr.Row(visible=new_advanced), gr.Button(visible=new_advanced), gr.Row(visible= not new_advanced), gr.Dropdown(choices=lset_choices, value= lset_name)
else:
return gr.Row(visible=new_advanced), gr.Row(visible=True), gr.Button(visible=True), gr.Row(visible= False), gr.Dropdown(choices=lset_choices, value= lset_name)
def get_settings_dict(state, i2v, prompt, image_prompt_type, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step):
loras = state["loras"]
activated_loras = [Path( loras[int(no)]).parts[-1] for no in loras_choices ]
ui_settings = {
"prompts": prompt,
"resolution": resolution,
"video_length": video_length,
"num_inference_steps": num_inference_steps,
"seed": seed,
"repeat_generation": repeat_generation,
"multi_images_gen_type": multi_images_gen_type,
"guidance_scale": guidance_scale,
"flow_shift": flow_shift,
"negative_prompt": negative_prompt,
"activated_loras": activated_loras,
"loras_multipliers": loras_mult_choices,
"tea_cache": tea_cache_setting,
"tea_cache_start_step_perc": tea_cache_start_step_perc,
"RIFLEx_setting": RIFLEx_setting,
"slg_switch": slg_switch,
"slg_layers": slg_layers,
"slg_start_perc": slg_start_perc,
"slg_end_perc": slg_end_perc,
"cfg_star_switch": cfg_star_switch,
"cfg_zero_step": cfg_zero_step
}
if i2v:
ui_settings["type"] = "Wan2.1GP by DeepBeepMeep - image2video"
ui_settings["image_prompt_type"] = image_prompt_type
else:
ui_settings["type"] = "Wan2.1GP by DeepBeepMeep - text2video"
return ui_settings
def save_settings(state, prompt, image_prompt_type, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step):
if state.get("validate_success",0) != 1:
return
ui_defaults = get_settings_dict(state, use_image2video, prompt, image_prompt_type, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step)
defaults_filename = get_settings_file_name(use_image2video)
with open(defaults_filename, "w", encoding="utf-8") as f:
json.dump(ui_defaults, f, indent=4)
gr.Info("New Default Settings saved")
def download_loras():
from huggingface_hub import snapshot_download
yield gr.Row(visible=True), "<B><FONT SIZE=3>Please wait while the Loras are being downloaded</B></FONT>", *[gr.Column(visible=False)] * 2
lora_dir = get_lora_dir(True)
log_path = os.path.join(lora_dir, "log.txt")
if not os.path.isfile(log_path):
import shutil
tmp_path = os.path.join(lora_dir, "tmp_lora_dowload")
import glob
snapshot_download(repo_id="DeepBeepMeep/Wan2.1", allow_patterns="loras_i2v/*", local_dir= tmp_path)
for f in glob.glob(os.path.join(tmp_path, "loras_i2v", "*.*")):
target_file = os.path.join(lora_dir, Path(f).parts[-1] )
if os.path.isfile(target_file):
os.remove(f)
else:
shutil.move(f, lora_dir)
try:
os.remove(tmp_path)
except:
pass
yield gr.Row(visible=True), "<B><FONT SIZE=3>Loras have been completely downloaded</B></FONT>", *[gr.Column(visible=True)] * 2
from datetime import datetime
dt = datetime.today().strftime('%Y-%m-%d')
with open( log_path, "w", encoding="utf-8") as writer:
writer.write(f"Loras downloaded on the {dt} at {time.time()} on the {time.time()}")
return
def generate_video_tab(image2video=False):
filename = transformer_filename_i2v if image2video else transformer_filename_t2v
ui_defaults= get_default_settings(filename, image2video)
state_dict = {}
state_dict["advanced"] = advanced
state_dict["loras_model"] = filename
preset_to_load = lora_preselected_preset if lora_preselected_preset_for_i2v == image2video else ""
loras, loras_names, loras_presets, default_loras_choices, default_loras_multis_str, default_lora_preset_prompt, default_lora_preset = setup_loras(image2video, None, get_lora_dir(image2video), preset_to_load, None)
state_dict["loras"] = loras
state_dict["loras_presets"] = loras_presets
state_dict["loras_names"] = loras_names
launch_prompt = ""
launch_preset = ""
launch_loras = []
launch_multis_str = ""
if len(default_lora_preset) > 0 and image2video == lora_preselected_preset_for_i2v:
launch_preset = default_lora_preset
launch_prompt = default_lora_preset_prompt
launch_loras = default_loras_choices
launch_multis_str = default_loras_multis_str
if len(launch_prompt) == 0:
launch_prompt = ui_defaults["prompts"]
if len(launch_loras) == 0:
activated_loras = ui_defaults["activated_loras"]
launch_multis_str = ui_defaults["loras_multipliers"]
if len(activated_loras) > 0:
lora_filenames = [os.path.basename(lora_path) for lora_path in loras]
activated_indices = []
for lora_file in ui_defaults["activated_loras"]:
try:
idx = lora_filenames.index(lora_file)
activated_indices.append(str(idx))
except ValueError:
print(f"Warning: Lora file {lora_file} from config not found in loras directory")
launch_loras = activated_indices
header = gr.Markdown(generate_header(model_filename, compile, attention_mode))
with gr.Row(visible= image2video):
with gr.Row(scale =2):
gr.Markdown("<I>Wan2GP's Lora Festival ! Press the following button to download i2v <B>Remade</B> Loras collection (and bonuses Loras).")
with gr.Row(scale =1):
download_loras_btn = gr.Button("---> Let the Lora's Festival Start !", scale =1)
with gr.Row(scale =1):
gr.Markdown("")
with gr.Row(visible= image2video) as download_status_row:
download_status = gr.Markdown()
with gr.Row():
with gr.Column():
with gr.Column(visible=False, elem_id="image-modal-container") as modal_container:
with gr.Row(elem_id="image-modal-close-button-row"):
close_modal_button = gr.Button("", size="sm")
modal_image_display = gr.Image(label="Full Resolution Image", interactive=False, show_label=False)
gallery_update_trigger = gr.Textbox(value="0", visible=False, label="_gallery_trigger")
with gr.Row(visible= len(loras)>0) as presets_column:
lset_choices = [ (preset, preset) for preset in loras_presets ] + [(get_new_preset_msg(advanced), "")]
with gr.Column(scale=6):
lset_name = gr.Dropdown(show_label=False, allow_custom_value= True, scale=5, filterable=True, choices= lset_choices, value=launch_preset)
with gr.Column(scale=1):
with gr.Row(height=17):
apply_lset_btn = gr.Button("Apply Lora Preset", size="sm", min_width= 1)
refresh_lora_btn = gr.Button("Refresh", size="sm", min_width= 1, visible=advanced or not only_allow_edit_in_advanced)
save_lset_prompt_drop= gr.Dropdown(
choices=[
("Save Prompt Comments Only", 0),
("Save Full Prompt", 1)
], show_label= False, container=False, value =1, visible= False
)
with gr.Row(height=17, visible=False) as refresh2_row:
refresh_lora_btn2 = gr.Button("Refresh", size="sm", min_width= 1)
with gr.Row(height=17, visible=advanced or not only_allow_edit_in_advanced) as preset_buttons_rows:
confirm_save_lset_btn = gr.Button("Go Ahead Save it !", size="sm", min_width= 1, visible=False)
confirm_delete_lset_btn = gr.Button("Go Ahead Delete it !", size="sm", min_width= 1, visible=False)
save_lset_btn = gr.Button("Save", size="sm", min_width= 1)
delete_lset_btn = gr.Button("Delete", size="sm", min_width= 1)
cancel_lset_btn = gr.Button("Don't do it !", size="sm", min_width= 1 , visible=False)
video_to_continue = gr.Video(label= "Video to continue", visible= image2video and False) #######
image_prompt_type= ui_defaults.get("image_prompt_type",0)
image_prompt_type_radio = gr.Radio( [("Use only a Start Image", 0),("Use both a Start and an End Image", 1)], value =image_prompt_type, label="Location", show_label= False, scale= 3, visible=image2video)
if args.multiple_images:
image_to_continue = gr.Gallery(
label="Images as starting points for new videos", type ="pil", #file_types= "image",
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible=image2video)
else:
image_to_continue = gr.Image(label= "Image as a starting point for a new video", type ="pil", visible=image2video)
if args.multiple_images:
image_to_end = gr.Gallery(
label="Images as ending points for new videos", type ="pil", #file_types= "image",
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible=image_prompt_type==1)
else:
image_to_end = gr.Image(label= "Last Image for a new video", type ="pil", visible=image_prompt_type==1)
def switch_image_prompt_type_radio(image_prompt_type_radio):
if args.multiple_images:
return gr.Gallery(visible = (image_prompt_type_radio == 1) )
else:
return gr.Image(visible = (image_prompt_type_radio == 1) )
image_prompt_type_radio.change(fn=switch_image_prompt_type_radio, inputs=[image_prompt_type_radio], outputs=[image_to_end])
advanced_prompt = advanced
prompt_vars=[]
if advanced_prompt:
default_wizard_prompt, variables, values= None, None, None
else:
default_wizard_prompt, variables, values, errors = extract_wizard_prompt(launch_prompt)
advanced_prompt = len(errors) > 0
with gr.Column(visible= advanced_prompt) as prompt_column_advanced:
prompt = gr.Textbox( visible= advanced_prompt, label="Prompts (each new line of prompt will generate a new video, # lines = comments, ! lines = macros)", value=launch_prompt, lines=3)
with gr.Column(visible=not advanced_prompt and len(variables) > 0) as prompt_column_wizard_vars:
gr.Markdown("<B>Please fill the following input fields to adapt automatically the Prompt:</B>")
wizard_prompt_activated = "off"
wizard_variables = ""
with gr.Row():
if not advanced_prompt:
for variable in variables:
value = values.get(variable, "")
prompt_vars.append(gr.Textbox( placeholder=variable, min_width=80, show_label= False, info= variable, visible= True, value= "\n".join(value) ))
wizard_prompt_activated = "on"
if len(variables) > 0:
wizard_variables = "\n".join(variables)
for _ in range( PROMPT_VARS_MAX - len(prompt_vars)):
prompt_vars.append(gr.Textbox(visible= False, min_width=80, show_label= False))
with gr.Column(not advanced_prompt) as prompt_column_wizard:
wizard_prompt = gr.Textbox(visible = not advanced_prompt, label="Prompts (each new line of prompt will generate a new video, # lines = comments)", value=default_wizard_prompt, lines=3)
wizard_prompt_activated_var = gr.Text(wizard_prompt_activated, visible= False)
wizard_variables_var = gr.Text(wizard_variables, visible = False)
state = gr.State(state_dict)
with gr.Row():
if image2video:
resolution = gr.Dropdown(
choices=[
# 720p
("720p", "1280x720"),
("480p", "832x480"),
],
value=ui_defaults["resolution"],
label="Resolution (video will have the same height / width ratio than the original image)"
)
else:
resolution = gr.Dropdown(
choices=[
# 720p
("1280x720 (16:9, 720p)", "1280x720"),
("720x1280 (9:16, 720p)", "720x1280"),
("1024x1024 (4:3, 720p)", "1024x024"),
# ("832x1104 (3:4, 720p)", "832x1104"),
# ("960x960 (1:1, 720p)", "960x960"),
# 480p
# ("960x544 (16:9, 480p)", "960x544"),
("832x480 (16:9, 480p)", "832x480"),
("480x832 (9:16, 480p)", "480x832"),
# ("832x624 (4:3, 540p)", "832x624"),
# ("624x832 (3:4, 540p)", "624x832"),
# ("720x720 (1:1, 540p)", "720x720"),
],
value=ui_defaults["resolution"],
label="Resolution"
)
with gr.Row():
with gr.Column():
video_length = gr.Slider(5, 193, value=ui_defaults["video_length"], step=4, label="Number of frames (16 = 1s)")
with gr.Column():
num_inference_steps = gr.Slider(1, 100, value=ui_defaults["num_inference_steps"], step=1, label="Number of Inference Steps")
with gr.Row():
max_frames = gr.Slider(1, 100, value=9, step=1, label="Number of input frames to use for Video2World prediction", visible=image2video and False) #########
show_advanced = gr.Checkbox(label="Advanced Mode", value=advanced)
with gr.Row(visible=advanced) as advanced_row:
with gr.Column():
seed = gr.Slider(-1, 999999999, value=ui_defaults["seed"], step=1, label="Seed (-1 for random)")
with gr.Row():
repeat_generation = gr.Slider(1, 25.0, value=ui_defaults["repeat_generation"], step=1, label="Default Number of Generated Videos per Prompt")
multi_images_gen_type = gr.Dropdown( value=ui_defaults["multi_images_gen_type"],
choices=[
("Generate every combination of images and texts", 0),
("Match images and text prompts", 1),
], visible= args.multiple_images, label= "Multiple Images as Texts Prompts"
)
with gr.Row():
guidance_scale = gr.Slider(1.0, 20.0, value=ui_defaults["guidance_scale"], step=0.5, label="Guidance Scale", visible=True)
embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale", visible=False)
flow_shift = gr.Slider(0.0, 25.0, value=ui_defaults["flow_shift"], step=0.1, label="Shift Scale")
with gr.Row():
negative_prompt = gr.Textbox(label="Negative Prompt", value=ui_defaults["negative_prompt"])
with gr.Column(visible = len(loras)>0) as loras_column:
gr.Markdown("<B>Loras can be used to create special effects on the video by mentioning a trigger word in the Prompt. You can save Loras combinations in presets.</B>")
loras_choices = gr.Dropdown(
choices=[
(lora_name, str(i) ) for i, lora_name in enumerate(loras_names)
],
value= launch_loras,
multiselect= True,
label="Activated Loras"
)
loras_mult_choices = gr.Textbox(label="Loras Multipliers (1.0 by default) separated by space characters or carriage returns, line that starts with # are ignored", value=launch_multis_str)
with gr.Row():
gr.Markdown("<B>Tea Cache accelerates by skipping intelligently some steps, the more steps are skipped the lower the quality of the video (Tea Cache consumes also VRAM)</B>")
with gr.Row():
tea_cache_setting = gr.Dropdown(
choices=[
("Tea Cache Disabled", 0),
("around x1.5 speed up", 1.5),
("around x1.75 speed up", 1.75),
("around x2 speed up", 2.0),
("around x2.25 speed up", 2.25),
("around x2.5 speed up", 2.5),
],
value=float(ui_defaults["tea_cache"]),
visible=True,
label="Tea Cache Global Acceleration"
)
tea_cache_start_step_perc = gr.Slider(0, 100, value=ui_defaults["tea_cache_start_step_perc"], step=1, label="Tea Cache starting moment in % of generation")
gr.Markdown("<B>With Riflex you can generate videos longer than 5s which is the default duration of videos used to train the model</B>")
RIFLEx_setting = gr.Dropdown(
choices=[
("Auto (ON if Video longer than 5s)", 0),
("Always ON", 1),
("Always OFF", 2),
],
value=ui_defaults["RIFLEx_setting"],
label="RIFLEx positional embedding to generate long video"
)
with gr.Row():
gr.Markdown("<B>Experimental: Skip Layer Guidance, should improve video quality</B>")
with gr.Row():
slg_switch = gr.Dropdown(
choices=[
("OFF", 0),
("ON", 1),
],
value=ui_defaults["slg_switch"],
visible=True,
scale = 1,
label="Skip Layer guidance"
)
slg_layers = gr.Dropdown(
choices=[
(str(i), i ) for i in range(40)
],
value=ui_defaults["slg_layers"],
multiselect= True,
label="Skip Layers",
scale= 3
)
with gr.Row():
slg_start_perc = gr.Slider(0, 100, value=ui_defaults["slg_start_perc"], step=1, label="Denoising Steps % start")
slg_end_perc = gr.Slider(0, 100, value=ui_defaults["slg_end_perc"], step=1, label="Denoising Steps % end")
with gr.Row():
gr.Markdown("<B>Experimental: Classifier-Free Guidance Zero Star, better adherence to Text Prompt")
with gr.Row():
cfg_star_switch = gr.Dropdown(
choices=[
("OFF", 0),
("ON", 1),
],
value=ui_defaults.get("cfg_star_switch",0),
visible=True,
scale = 1,
label="CFG Star"
)
with gr.Row():
cfg_zero_step = gr.Slider(-1, 39, value=ui_defaults.get("cfg_zero_step",-1), step=1, label="CFG Zero below this Layer (Extra Process)")
with gr.Row():
save_settings_btn = gr.Button("Set Settings as Default")
show_advanced.change(fn=switch_advanced, inputs=[state, show_advanced, lset_name], outputs=[advanced_row, preset_buttons_rows, refresh_lora_btn, refresh2_row ,lset_name ]).then(
fn=switch_prompt_type, inputs = [state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars], outputs = [wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, prompt_column_advanced, prompt_column_wizard, prompt_column_wizard_vars, *prompt_vars])
with gr.Column():
output = gr.Gallery(
label="Generated videos", show_label=False, elem_id="gallery"
, columns=[3], rows=[1], object_fit="contain", height=450, selected_index=0, interactive= False)
generate_btn = gr.Button("Generate")
queue_df = gr.DataFrame(
headers=["Status", "Completed", "Progress", "Steps", "Time", "Prompt", "Start", "End", "", "", ""],
datatype=["str", "str", "str", "str", "str", "markdown", "markdown", "markdown", "str", "str", "str"],
interactive=False,
col_count=(11, "fixed"),
wrap=True,
value=update_queue_data,
every=1,
elem_id="queue_df"
)
def handle_selection(evt: gr.SelectData):
if evt.index is None:
return gr.update(), gr.update(), gr.update(visible=False)
row_index, col_index = evt.index
cell_value = None
if col_index in [8, 9, 10]:
if col_index == 8: cell_value = ""
elif col_index == 9: cell_value = ""
elif col_index == 10: cell_value = ""
if col_index == 8:
new_df_data = move_up([row_index])
return new_df_data, gr.update(), gr.update(visible=False)
elif col_index == 9:
new_df_data = move_down([row_index])
return new_df_data, gr.update(), gr.update(visible=False)
elif col_index == 10:
new_df_data = remove_task([row_index])
return new_df_data, gr.update(), gr.update(visible=False)
start_img_col_idx = 6
end_img_col_idx = 7
image_data_to_show = None
if col_index == start_img_col_idx:
with lock:
if row_index < len(queue):
image_data_to_show = queue[row_index].get('start_image_data')
elif col_index == end_img_col_idx:
with lock:
if row_index < len(queue):
image_data_to_show = queue[row_index].get('end_image_data')
if image_data_to_show:
return gr.update(), gr.update(value=image_data_to_show), gr.update(visible=True)
else:
return gr.update(), gr.update(), gr.update(visible=False)
def refresh_gallery_on_trigger(state):
if(state.get("update_gallery", False)):
state['update_gallery'] = False
return gr.update(value=state.get("file_list", []))
selected_indices = gr.State([])
queue_df.select(
fn=handle_selection,
inputs=None,
outputs=[queue_df, modal_image_display, modal_container],
)
gallery_update_trigger.change(
fn=refresh_gallery_on_trigger,
inputs=[state],
outputs=[output]
)
queue_df.change(
fn=refresh_gallery,
inputs=[state],
outputs=[gallery_update_trigger]
)
save_settings_btn.click( fn=validate_wizard_prompt, inputs =[state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] , outputs= [prompt]).then(
save_settings, inputs = [state, prompt, image_prompt_type_radio, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt,
loras_choices, loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers,
slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step ], outputs = [])
save_lset_btn.click(validate_save_lset, inputs=[lset_name], outputs=[apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn,confirm_save_lset_btn, cancel_lset_btn, save_lset_prompt_drop])
confirm_save_lset_btn.click(fn=validate_wizard_prompt, inputs =[state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] , outputs= [prompt]).then(
save_lset, inputs=[state, lset_name, loras_choices, loras_mult_choices, prompt, save_lset_prompt_drop], outputs=[lset_name, apply_lset_btn,refresh_lora_btn, delete_lset_btn, save_lset_btn, confirm_save_lset_btn, cancel_lset_btn, save_lset_prompt_drop])
delete_lset_btn.click(validate_delete_lset, inputs=[lset_name], outputs=[apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn,confirm_delete_lset_btn, cancel_lset_btn ])
confirm_delete_lset_btn.click(delete_lset, inputs=[state, lset_name], outputs=[lset_name, apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn,confirm_delete_lset_btn, cancel_lset_btn ])
cancel_lset_btn.click(cancel_lset, inputs=[], outputs=[apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn, confirm_delete_lset_btn,confirm_save_lset_btn, cancel_lset_btn,save_lset_prompt_drop ])
apply_lset_btn.click(apply_lset, inputs=[state, wizard_prompt_activated_var, lset_name,loras_choices, loras_mult_choices, prompt], outputs=[wizard_prompt_activated_var, loras_choices, loras_mult_choices, prompt]).then(
fn = fill_wizard_prompt, inputs = [state, wizard_prompt_activated_var, prompt, wizard_prompt], outputs = [ wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, prompt_column_advanced, prompt_column_wizard, prompt_column_wizard_vars, *prompt_vars]
)
refresh_lora_btn.click(refresh_lora_list, inputs=[state, lset_name,loras_choices], outputs=[lset_name, loras_choices])
refresh_lora_btn2.click(refresh_lora_list, inputs=[state, lset_name,loras_choices], outputs=[lset_name, loras_choices])
download_loras_btn.click(fn=download_loras, inputs=[], outputs=[download_status_row, download_status, presets_column, loras_column]).then(fn=refresh_lora_list, inputs=[state, lset_name,loras_choices], outputs=[lset_name, loras_choices])
output.select(select_video, state, None )
#generate_btn.click(
# fn=validate_wizard_prompt, inputs =[state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] , outputs= [prompt]
#).then(
generate_btn.click(
fn=process_prompt_and_add_tasks,
inputs=[
prompt,
negative_prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
repeat_generation,
multi_images_gen_type,
tea_cache_setting,
tea_cache_start_step_perc,
loras_choices,
loras_mult_choices,
image_prompt_type_radio,
image_to_continue,
image_to_end,
video_to_continue,
max_frames,
RIFLEx_setting,
slg_switch,
slg_layers,
slg_start_perc,
slg_end_perc,
cfg_star_switch,
cfg_zero_step,
state,
gr.State(image2video)
],
outputs=queue_df
)
close_modal_button.click(
lambda: gr.update(visible=False),
inputs=[],
outputs=[modal_container]
)
return loras_column, loras_choices, presets_column, lset_name, header, state
def generate_configuration_tab():
state_dict = {}
state = gr.State(state_dict)
gr.Markdown("Please click Apply Changes at the bottom so that the changes are effective. Some choices below may be locked if the app has been launched by specifying a config preset.")
with gr.Column():
index = transformer_choices_t2v.index(transformer_filename_t2v)
index = 0 if index ==0 else index
transformer_t2v_choice = gr.Dropdown(
choices=[
("WAN 2.1 1.3B Text to Video 16 bits (recommended)- the small model for fast generations with low VRAM requirements", 0),
("WAN 2.1 14B Text to Video 16 bits - the default engine in its original glory, offers a slightly better image quality but slower and requires more RAM", 1),
("WAN 2.1 14B Text to Video quantized to 8 bits (recommended) - the default engine but quantized", 2),
],
value= index,
label="Transformer model for Text to Video",
interactive= not lock_ui_transformer,
visible=True #not use_image2video
)
index = transformer_choices_i2v.index(transformer_filename_i2v)
index = 0 if index ==0 else index
transformer_i2v_choice = gr.Dropdown(
choices=[
("WAN 2.1 - 480p 14B Image to Video 16 bits - the default engine in its original glory, offers a slightly better image quality but slower and requires more RAM", 0),
("WAN 2.1 - 480p 14B Image to Video quantized to 8 bits (recommended) - the default engine but quantized", 1),
("WAN 2.1 - 720p 14B Image to Video 16 bits - the default engine in its original glory, offers a slightly better image quality but slower and requires more RAM", 2),
("WAN 2.1 - 720p 14B Image to Video quantized to 8 bits - the default engine but quantized", 3),
("WAN 2.1 - Fun InP 1.3B 16 bits - the small model for fast generations with low VRAM requirements", 4),
("WAN 2.1 - Fun InP 14B 16 bits - Fun InP version in its original glory, offers a slightly better image quality but slower and requires more RAM", 5),
("WAN 2.1 - Fun InP 14B quantized to 8 bits - quantized Fun InP version", 6),
],
value= index,
label="Transformer model for Image to Video",
interactive= not lock_ui_transformer,
visible = True # use_image2video,
)
index = text_encoder_choices.index(text_encoder_filename)
index = 0 if index ==0 else index
text_encoder_choice = gr.Dropdown(
choices=[
("UMT5 XXL 16 bits - unquantized text encoder, better quality uses more RAM", 0),
("UMT5 XXL quantized to 8 bits - quantized text encoder, slightly worse quality but uses less RAM", 1),
],
value= index,
label="Text Encoder model"
)
save_path_choice = gr.Textbox(
label="Output Folder for Generated Videos",
value=server_config.get("save_path", save_path)
)
def check(mode):
if not mode in attention_modes_installed:
return " (NOT INSTALLED)"
elif not mode in attention_modes_supported:
return " (NOT SUPPORTED)"
else:
return ""
attention_choice = gr.Dropdown(
choices=[
("Auto : pick sage2 > sage > sdpa depending on what is installed", "auto"),
("Scale Dot Product Attention: default, always available", "sdpa"),
("Flash" + check("flash")+ ": good quality - requires additional install (usually complex to set up on Windows without WSL)", "flash"),
# ("Xformers" + check("xformers")+ ": good quality - requires additional install (usually complex, may consume less VRAM to set up on Windows without WSL)", "xformers"),
("Sage" + check("sage")+ ": 30% faster but slightly worse quality - requires additional install (usually complex to set up on Windows without WSL)", "sage"),
("Sage2" + check("sage2")+ ": 40% faster but slightly worse quality - requires additional install (usually complex to set up on Windows without WSL)", "sage2"),
],
value= attention_mode,
label="Attention Type",
interactive= not lock_ui_attention
)
gr.Markdown("Beware: when restarting the server or changing a resolution or video duration, the first step of generation for a duration / resolution may last a few minutes due to recompilation")
compile_choice = gr.Dropdown(
choices=[
("ON: works only on Linux / WSL", "transformer"),
("OFF: no other choice if you have Windows without using WSL", "" ),
],
value= compile,
label="Compile Transformer (up to 50% faster and 30% more frames but requires Linux / WSL and Flash or Sage attention)",
interactive= not lock_ui_compile
)
vae_config_choice = gr.Dropdown(
choices=[
("Auto", 0),
("Disabled (faster but may require up to 22 GB of VRAM)", 1),
("256 x 256 : If at least 8 GB of VRAM", 2),
("128 x 128 : If at least 6 GB of VRAM", 3),
],
value= vae_config,
label="VAE Tiling - reduce the high VRAM requirements for VAE decoding and VAE encoding (if enabled it will be slower)"
)
boost_choice = gr.Dropdown(
choices=[
# ("Auto (ON if Video longer than 5s)", 0),
("ON", 1),
("OFF", 2),
],
value=boost,
label="Boost: Give a 10% speed speedup without losing quality at the cost of a litle VRAM (up to 1GB for max frames and resolution)"
)
profile_choice = gr.Dropdown(
choices=[
("HighRAM_HighVRAM, profile 1: at least 48 GB of RAM and 24 GB of VRAM, the fastest for short videos a RTX 3090 / RTX 4090", 1),
("HighRAM_LowVRAM, profile 2 (Recommended): at least 48 GB of RAM and 12 GB of VRAM, the most versatile profile with high RAM, better suited for RTX 3070/3080/4070/4080 or for RTX 3090 / RTX 4090 with large pictures batches or long videos", 2),
("LowRAM_HighVRAM, profile 3: at least 32 GB of RAM and 24 GB of VRAM, adapted for RTX 3090 / RTX 4090 with limited RAM for good speed short video",3),
("LowRAM_LowVRAM, profile 4 (Default): at least 32 GB of RAM and 12 GB of VRAM, if you have little VRAM or want to generate longer videos",4),
("VerylowRAM_LowVRAM, profile 5: (Fail safe): at least 16 GB of RAM and 10 GB of VRAM, if you don't have much it won't be fast but maybe it will work",5)
],
value= profile,
label="Profile (for power users only, not needed to change it)"
)
default_ui_choice = gr.Dropdown(
choices=[
("Text to Video", "t2v"),
("Image to Video", "i2v"),
],
value= default_ui,
label="Default mode when launching the App if not '--t2v' ot '--i2v' switch is specified when launching the server ",
)
metadata_choice = gr.Dropdown(
choices=[
("Export JSON files", "json"),
("Add metadata to video", "metadata"),
("Neither", "none")
],
value=server_config.get("metadata_type", "metadata"),
label="Metadata Handling"
)
reload_choice = gr.Dropdown(
choices=[
("When changing tabs", 1),
("When pressing generate", 2),
],
value=server_config.get("reload_model",2),
label="Reload model"
)
clear_file_list_choice = gr.Dropdown(
choices=[
("None", 0),
("Keep the last video", 1),
("Keep the last 5 videos", 5),
("Keep the last 10 videos", 10),
("Keep the last 20 videos", 20),
("Keep the last 30 videos", 30),
],
value=server_config.get("clear_file_list", 0),
label="Keep Previously Generated Videos when starting a Generation Batch"
)
msg = gr.Markdown()
apply_btn = gr.Button("Apply Changes")
apply_btn.click(
fn=apply_changes,
inputs=[
state,
transformer_t2v_choice,
transformer_i2v_choice,
text_encoder_choice,
save_path_choice,
attention_choice,
compile_choice,
profile_choice,
vae_config_choice,
metadata_choice,
default_ui_choice,
boost_choice,
clear_file_list_choice,
reload_choice,
],
outputs= msg
)
def generate_about_tab():
gr.Markdown("<H2>Wan2.1GP - Wan 2.1 model for the GPU Poor by <B>DeepBeepMeep</B> (<A HREF='https://github.com/deepbeepmeep/Wan2GP'>GitHub</A>)</H2>")
gr.Markdown("Original Wan 2.1 Model by <B>Alibaba</B> (<A HREF='https://github.com/Wan-Video/Wan2.1'>GitHub</A>)")
gr.Markdown("Many thanks to:")
gr.Markdown("- <B>Cocktail Peanuts</B> : QA and simple installation via Pinokio.computer")
gr.Markdown("- <B>AmericanPresidentJimmyCarter</B> : added original support for Skip Layer Guidance")
gr.Markdown("- <B>Tophness</B> : created multi tabs framework")
gr.Markdown("- <B>Remade_AI</B> : for creating their awesome Loras collection")
def on_tab_select(t2v_state, i2v_state, evt: gr.SelectData):
global lora_model_filename, use_image2video
t2v_header = generate_header(transformer_filename_t2v, compile, attention_mode)
i2v_header = generate_header(transformer_filename_i2v, compile, attention_mode)
new_t2v = evt.index == 0
new_i2v = evt.index == 1
use_image2video = new_i2v
if(server_config.get("reload_model",2) == 1):
with lock:
queue_empty = len(queue) == 0
if queue_empty:
global wan_model, offloadobj
if wan_model is not None:
if offloadobj is not None:
offloadobj.release()
offloadobj = None
wan_model = None
gc.collect()
torch.cuda.empty_cache()
wan_model, offloadobj, trans = load_models(use_image2video)
del trans
if new_t2v or new_i2v:
state = i2v_state if new_i2v else t2v_state
lora_model_filename = state["loras_model"]
model_filename = model_needed(new_i2v)
if ("1.3B" in model_filename and not "1.3B" in lora_model_filename or "14B" in model_filename and not "14B" in lora_model_filename):
lora_dir = get_lora_dir(new_i2v)
loras, loras_names, loras_presets, _, _, _, _ = setup_loras(new_i2v, None, lora_dir, lora_preselected_preset, None)
state["loras"] = loras
state["loras_names"] = loras_names
state["loras_presets"] = loras_presets
state["loras_model"] = model_filename
advanced = state["advanced"]
new_loras_choices = [(name, str(i)) for i, name in enumerate(loras_names)]
lset_choices = [(preset, preset) for preset in loras_presets] + [(get_new_preset_msg(advanced), "")]
visible = len(loras_names)>0
if new_t2v:
return [
gr.Column(visible= visible),
gr.Dropdown(choices=new_loras_choices, visible=visible, value=[]),
gr.Column(visible= visible),
gr.Dropdown(choices=lset_choices, value=get_new_preset_msg(advanced), visible=visible),
t2v_header,
gr.Column(),
gr.Dropdown(),
gr.Column(),
gr.Dropdown(),
i2v_header,
]
else:
return [
gr.Column(),
gr.Dropdown(),
gr.Column(),
gr.Dropdown(),
t2v_header,
gr.Column(visible= visible),
gr.Dropdown(choices=new_loras_choices, visible=visible, value=[]),
gr.Column(visible= visible),
gr.Dropdown(choices=lset_choices, value=get_new_preset_msg(advanced), visible=visible),
i2v_header,
]
return [gr.Column(), gr.Dropdown(), gr.Column(), gr.Dropdown(), t2v_header,
gr.Column(), gr.Dropdown(), gr.Column(), gr.Dropdown(), i2v_header]
def create_demo():
css = """
.title-with-lines {
display: flex;
align-items: center;
margin: 30px 0;
}
.line {
flex-grow: 1;
height: 1px;
background-color: #333;
}
h2 {
margin: 0 20px;
white-space: nowrap;
}
.queue-item {
border: 1px solid #ccc;
padding: 10px;
margin: 5px 0;
border-radius: 5px;
}
.current {
background: #f8f9fa;
border-left: 4px solid #007bff;
}
.task-header {
display: flex;
justify-content: space-between;
margin-bottom: 5px;
}
.progress-container {
height: 10px;
background: #e9ecef;
border-radius: 5px;
overflow: hidden;
}
.progress-bar {
height: 100%;
background: #007bff;
transition: width 0.3s ease;
}
.task-details {
display: flex;
justify-content: space-between;
font-size: 0.9em;
color: #6c757d;
margin-top: 5px;
}
.task-prompt {
font-size: 0.8em;
color: #868e96;
margin-top: 5px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
#queue_df td:nth-child(-n+6) {
cursor: default !important;
pointer-events: none;
}
#queue_df th {
pointer-events: none;
}
#queue_df table {
overflow: hidden !important;
}
#queue_df::-webkit-scrollbar {
display: none !important;
}
#queue_df {
scrollbar-width: none !important;
-ms-overflow-style: none !important;
}
#queue_df td:nth-child(1) {
width: 100px;
}
#queue_df td:nth-child(7) img,
#queue_df td:nth-child(8) img,
max-width: 50px;
max-height: 50px;
object-fit: contain;
display: block;
margin: auto;
cursor: pointer;
text-align: center;
}
#queue_df td:nth-child(9),
#queue_df td:nth-child(10),
#queue_df td:nth-child(11) {
width: 60px;
padding: 2px !important;
cursor: pointer;
text-align: center;
font-weight: bold;
}
#queue_df td:nth-child(7):hover,
#queue_df td:nth-child(8):hover,
#queue_df td:nth-child(9):hover,
#queue_df td:nth-child(10):hover,
#queue_df td:nth-child(11):hover {
background-color: #e0e0e0;
}
#image-modal-container {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: rgba(0, 0, 0, 0.7);
justify-content: center;
align-items: center;
z-index: 1000;
padding: 20px;
box-sizing: border-box;
}
#image-modal-container > div {
background-color: white;
padding: 15px;
border-radius: 8px;
max-width: 90%;
max-height: 90%;
overflow: auto;
position: relative;
display: flex;
flex-direction: column;
}
#image-modal-container img {
max-width: 100%;
max-height: 80vh;
object-fit: contain;
margin-top: 10px;
}
#image-modal-close-button-row {
display: flex;
justify-content: flex-end;
}
#image-modal-close-button-row button {
cursor: pointer;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="sky", neutral_hue="slate", text_size="md")) as demo:
gr.Markdown("<div align=center><H1>Wan 2.1<SUP>GP</SUP> v3.3 <FONT SIZE=4>by <I>DeepBeepMeep</I></FONT> <FONT SIZE=3> (<A HREF='https://github.com/deepbeepmeep/Wan2GP'>Updates</A>)</FONT SIZE=3></H1></div>")
gr.Markdown("<FONT SIZE=3>Welcome to Wan 2.1GP a super fast and low VRAM AI Video Generator !</FONT>")
with gr.Accordion("Click here for some Info on how to use Wan2GP", open = False):
gr.Markdown("The VRAM requirements will depend greatly of the resolution and the duration of the video, for instance :")
gr.Markdown("- 848 x 480 with a 14B model: 80 frames (5s) : 8 GB of VRAM")
gr.Markdown("- 848 x 480 with the 1.3B model: 80 frames (5s) : 5 GB of VRAM")
gr.Markdown("- 1280 x 720 with a 14B model: 80 frames (5s): 11 GB of VRAM")
gr.Markdown("It is not recommmended to generate a video longer than 8s (128 frames) even if there is still some VRAM left as some artifacts may appear")
gr.Markdown("Please note that if your turn on compilation, the first denoising step of the first video generation will be slow due to the compilation. Therefore all your tests should be done with compilation turned off.")
with gr.Tabs(selected="i2v" if use_image2video else "t2v") as main_tabs:
with gr.Tab("Text To Video", id="t2v") as t2v_tab:
t2v_loras_column, t2v_loras_choices, t2v_presets_column, t2v_lset_name, t2v_header, t2v_state = generate_video_tab()
with gr.Tab("Image To Video", id="i2v") as i2v_tab:
i2v_loras_column, i2v_loras_choices, i2v_presets_column, i2v_lset_name, i2v_header, i2v_state = generate_video_tab(True)
if not args.lock_config:
with gr.Tab("Configuration"):
generate_configuration_tab()
with gr.Tab("About"):
generate_about_tab()
main_tabs.select(
fn=on_tab_select,
inputs=[t2v_state, i2v_state],
outputs=[
t2v_loras_column, t2v_loras_choices, t2v_presets_column, t2v_lset_name, t2v_header,
i2v_loras_column, i2v_loras_choices, i2v_presets_column, i2v_lset_name, i2v_header
]
)
return demo
if __name__ == "__main__":
threading.Thread(target=runner, daemon=True).start()
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
server_port = int(args.server_port)
if os.name == "nt":
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
if server_port == 0:
server_port = int(os.getenv("SERVER_PORT", "7860"))
server_name = args.server_name
if args.listen:
server_name = "0.0.0.0"
if len(server_name) == 0:
server_name = os.getenv("SERVER_NAME", "localhost")
demo = create_demo()
if args.open_browser:
import webbrowser
if server_name.startswith("http"):
url = server_name
else:
url = "http://" + server_name
webbrowser.open(url + ":" + str(server_port), new = 0, autoraise = True)
demo.launch(server_name=server_name, server_port=server_port, share=args.share, allowed_paths=[save_path])