mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 22:26:36 +00:00
437 lines
21 KiB
Python
437 lines
21 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Image processor class for LLaVa."""
|
|
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
|
|
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
|
from ...image_transforms import (
|
|
convert_to_rgb,
|
|
get_resize_output_image_size,
|
|
resize,
|
|
to_channel_dimension_format,
|
|
)
|
|
from ...image_utils import (
|
|
OPENAI_CLIP_MEAN,
|
|
OPENAI_CLIP_STD,
|
|
ChannelDimension,
|
|
ImageInput,
|
|
PILImageResampling,
|
|
get_image_size,
|
|
infer_channel_dimension_format,
|
|
is_scaled_image,
|
|
make_list_of_images,
|
|
to_numpy_array,
|
|
valid_images,
|
|
validate_kwargs,
|
|
validate_preprocess_arguments,
|
|
)
|
|
from ...utils import TensorType, is_vision_available, logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
if is_vision_available():
|
|
import PIL
|
|
|
|
|
|
class LlavaImageProcessor(BaseImageProcessor):
|
|
r"""
|
|
Constructs a LLaVa image processor.
|
|
|
|
Args:
|
|
do_pad (`bool`, *optional*, defaults to `False`):
|
|
Whether to pad the image to a square based on the longest edge.
|
|
The padding value is determined by the `image_mean` parameter.
|
|
Can be overridden by `do_pad` in the `preprocess` method.
|
|
do_resize (`bool`, *optional*, defaults to `True`):
|
|
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
|
`do_resize` in the `preprocess` method.
|
|
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
|
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
|
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
|
method.
|
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
|
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
|
do_center_crop (`bool`, *optional*, defaults to `True`):
|
|
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
|
`preprocess` method.
|
|
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
|
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
|
method.
|
|
do_rescale (`bool`, *optional*, defaults to `True`):
|
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
|
the `preprocess` method.
|
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
|
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
|
method.
|
|
do_normalize (`bool`, *optional*, defaults to `True`):
|
|
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
|
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
|
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
|
Whether to convert the image to RGB.
|
|
"""
|
|
|
|
model_input_names = ["pixel_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
do_pad: bool = False,
|
|
do_resize: bool = True,
|
|
size: Dict[str, int] = None,
|
|
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
|
do_center_crop: bool = True,
|
|
crop_size: Dict[str, int] = None,
|
|
do_rescale: bool = True,
|
|
rescale_factor: Union[int, float] = 1 / 255,
|
|
do_normalize: bool = True,
|
|
image_mean: Optional[Union[float, List[float]]] = None,
|
|
image_std: Optional[Union[float, List[float]]] = None,
|
|
do_convert_rgb: bool = True,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
size = size if size is not None else {"shortest_edge": 224}
|
|
size = get_size_dict(size, default_to_square=False)
|
|
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
|
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
|
|
|
self.do_pad = do_pad
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.resample = resample
|
|
self.do_center_crop = do_center_crop
|
|
self.crop_size = crop_size
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
|
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
|
self.do_convert_rgb = do_convert_rgb
|
|
self._valid_processor_keys = [
|
|
"images",
|
|
"do_pad",
|
|
"do_resize",
|
|
"size",
|
|
"resample",
|
|
"do_center_crop",
|
|
"crop_size",
|
|
"do_rescale",
|
|
"rescale_factor",
|
|
"do_normalize",
|
|
"image_mean",
|
|
"image_std",
|
|
"do_convert_rgb",
|
|
"return_tensors",
|
|
"data_format",
|
|
"input_data_format",
|
|
]
|
|
|
|
def pad_to_square(
|
|
self,
|
|
image: np.ndarray,
|
|
background_color: Union[int, Tuple[int, int, int]] = 0,
|
|
data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
) -> np.array:
|
|
"""
|
|
Pads an image to a square based on the longest edge.
|
|
|
|
Args:
|
|
image (`np.ndarray`):
|
|
The image to pad.
|
|
background_color (`int` or `Tuple[int, int, int]`, *optional*, defaults to 0):
|
|
The color to use for the padding. Can be an integer for single channel or a
|
|
tuple of integers representing for multi-channel images. If passed as integer
|
|
in mutli-channel mode, it will default to `0` in subsequent channels.
|
|
data_format (`str` or `ChannelDimension`, *optional*):
|
|
The channel dimension format for the output image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
If unset, will use same as the input image.
|
|
input_data_format (`str` or `ChannelDimension`, *optional*):
|
|
The channel dimension format for the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
If unset, will use the inferred format of the input image.
|
|
|
|
Returns:
|
|
`np.ndarray`: The padded image.
|
|
"""
|
|
height, width = get_image_size(image, input_data_format)
|
|
num_channels = image.shape[0] if input_data_format == ChannelDimension.FIRST else image.shape[-1]
|
|
|
|
if height == width:
|
|
image = (
|
|
to_channel_dimension_format(image, data_format, input_data_format)
|
|
if data_format is not None
|
|
else image
|
|
)
|
|
return image
|
|
|
|
max_dim = max(height, width)
|
|
|
|
# Ensure background_color is the correct shape
|
|
if isinstance(background_color, int):
|
|
background_color = [background_color]
|
|
elif len(background_color) != num_channels:
|
|
raise ValueError(
|
|
f"background_color must have no more than {num_channels} elements to match the number of channels"
|
|
)
|
|
|
|
if input_data_format == ChannelDimension.FIRST:
|
|
result = np.zeros((num_channels, max_dim, max_dim), dtype=image.dtype)
|
|
for i, color in enumerate(background_color):
|
|
result[i, :, :] = color
|
|
if width > height:
|
|
start = (max_dim - height) // 2
|
|
result[:, start : start + height, :] = image
|
|
else:
|
|
start = (max_dim - width) // 2
|
|
result[:, :, start : start + width] = image
|
|
else:
|
|
result = np.zeros((max_dim, max_dim, num_channels), dtype=image.dtype)
|
|
for i, color in enumerate(background_color):
|
|
result[:, :, i] = color
|
|
if width > height:
|
|
start = (max_dim - height) // 2
|
|
result[start : start + height, :, :] = image
|
|
else:
|
|
start = (max_dim - width) // 2
|
|
result[:, start : start + width, :] = image
|
|
|
|
image = (
|
|
to_channel_dimension_format(result, data_format, input_data_format) if data_format is not None else result
|
|
)
|
|
return image
|
|
|
|
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
|
|
def resize(
|
|
self,
|
|
image: np.ndarray,
|
|
size: Dict[str, int],
|
|
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
|
data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
**kwargs,
|
|
) -> np.ndarray:
|
|
"""
|
|
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
|
resized to keep the input aspect ratio.
|
|
|
|
Args:
|
|
image (`np.ndarray`):
|
|
Image to resize.
|
|
size (`Dict[str, int]`):
|
|
Size of the output image.
|
|
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
|
Resampling filter to use when resiizing the image.
|
|
data_format (`str` or `ChannelDimension`, *optional*):
|
|
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format of the input image. If not provided, it will be inferred.
|
|
"""
|
|
default_to_square = True
|
|
if "shortest_edge" in size:
|
|
size = size["shortest_edge"]
|
|
default_to_square = False
|
|
elif "height" in size and "width" in size:
|
|
size = (size["height"], size["width"])
|
|
else:
|
|
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
|
|
|
|
output_size = get_resize_output_image_size(
|
|
image,
|
|
size=size,
|
|
default_to_square=default_to_square,
|
|
input_data_format=input_data_format,
|
|
)
|
|
return resize(
|
|
image,
|
|
size=output_size,
|
|
resample=resample,
|
|
data_format=data_format,
|
|
input_data_format=input_data_format,
|
|
**kwargs,
|
|
)
|
|
|
|
def preprocess(
|
|
self,
|
|
images: ImageInput,
|
|
do_pad: Optional[bool] = None,
|
|
do_resize: Optional[bool] = None,
|
|
size: Optional[Dict[str, int]] = None,
|
|
resample: Optional[PILImageResampling] = None,
|
|
do_center_crop: Optional[bool] = None,
|
|
crop_size: Optional[int] = None,
|
|
do_rescale: Optional[bool] = None,
|
|
rescale_factor: Optional[float] = None,
|
|
do_normalize: Optional[bool] = None,
|
|
image_mean: Optional[Union[float, List[float]]] = None,
|
|
image_std: Optional[Union[float, List[float]]] = None,
|
|
do_convert_rgb: Optional[bool] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
**kwargs,
|
|
) -> PIL.Image.Image:
|
|
"""
|
|
Preprocess an image or batch of images.
|
|
|
|
Args:
|
|
images (`ImageInput`):
|
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
|
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
|
|
Whether to pad the image to a square based on the longest edge.
|
|
The padding value is determined by the `image_mean` parameter.
|
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
|
Whether to resize the image.
|
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
|
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
|
the longest edge resized to keep the input aspect ratio.
|
|
resample (`int`, *optional*, defaults to `self.resample`):
|
|
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
|
has an effect if `do_resize` is set to `True`.
|
|
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
|
Whether to center crop the image.
|
|
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
|
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
|
Whether to rescale the image.
|
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
|
Whether to normalize the image.
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
|
`True`.
|
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
|
Whether to convert the image to RGB.
|
|
return_tensors (`str` or `TensorType`, *optional*):
|
|
The type of tensors to return. Can be one of:
|
|
- Unset: Return a list of `np.ndarray`.
|
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
|
The channel dimension format for the output image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- Unset: Use the channel dimension format of the input image.
|
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
|
from the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
|
"""
|
|
do_pad = do_pad if do_pad is not None else self.do_pad
|
|
do_resize = do_resize if do_resize is not None else self.do_resize
|
|
size = size if size is not None else self.size
|
|
size = get_size_dict(size, param_name="size", default_to_square=False)
|
|
resample = resample if resample is not None else self.resample
|
|
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
|
crop_size = crop_size if crop_size is not None else self.crop_size
|
|
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
|
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
|
image_mean = image_mean if image_mean is not None else self.image_mean
|
|
image_std = image_std if image_std is not None else self.image_std
|
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
|
|
|
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
|
|
|
images = make_list_of_images(images)
|
|
|
|
if not valid_images(images):
|
|
raise ValueError(
|
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
|
"torch.Tensor, tf.Tensor or jax.ndarray."
|
|
)
|
|
# we don't pass `do_pad` here since LLaVa uses a custom padding to a square
|
|
validate_preprocess_arguments(
|
|
do_rescale=do_rescale,
|
|
rescale_factor=rescale_factor,
|
|
do_normalize=do_normalize,
|
|
image_mean=image_mean,
|
|
image_std=image_std,
|
|
do_center_crop=do_center_crop,
|
|
crop_size=crop_size,
|
|
do_resize=do_resize,
|
|
size=size,
|
|
resample=resample,
|
|
)
|
|
|
|
if do_convert_rgb:
|
|
images = [convert_to_rgb(image) for image in images]
|
|
|
|
# All transformations expect numpy arrays.
|
|
images = [to_numpy_array(image) for image in images]
|
|
|
|
if is_scaled_image(images[0]) and do_rescale:
|
|
logger.warning_once(
|
|
"It looks like you are trying to rescale already rescaled images. If the input"
|
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
|
)
|
|
|
|
if input_data_format is None:
|
|
# We assume that all images have the same channel dimension format.
|
|
input_data_format = infer_channel_dimension_format(images[0])
|
|
|
|
processed_images = []
|
|
for image in images:
|
|
if do_pad:
|
|
image = self.pad_to_square(
|
|
image=image,
|
|
background_color=tuple(int(x * 255) for x in self.image_mean),
|
|
input_data_format=input_data_format,
|
|
)
|
|
|
|
if do_resize:
|
|
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
|
|
|
if do_center_crop:
|
|
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
|
|
|
|
if do_rescale:
|
|
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
|
|
|
if do_normalize:
|
|
image = self.normalize(
|
|
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
|
)
|
|
|
|
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
|
processed_images.append(image)
|
|
|
|
return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors)
|
|
|
|
|
|
__all__ = ["LlavaImageProcessor"]
|