mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 22:26:36 +00:00
395 lines
19 KiB
Python
395 lines
19 KiB
Python
import argparse
|
|
import os
|
|
import os.path as osp
|
|
import torchvision.transforms.functional as TF
|
|
import torch.nn.functional as F
|
|
import cv2
|
|
import tempfile
|
|
import imageio
|
|
import torch
|
|
import decord
|
|
from PIL import Image
|
|
import numpy as np
|
|
from rembg import remove, new_session
|
|
import random
|
|
import ffmpeg
|
|
import os
|
|
import tempfile
|
|
import subprocess
|
|
import json
|
|
from functools import lru_cache
|
|
os.environ["U2NET_HOME"] = os.path.join(os.getcwd(), "ckpts", "rembg")
|
|
|
|
|
|
from PIL import Image
|
|
video_info_cache = []
|
|
def seed_everything(seed: int):
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed(seed)
|
|
if torch.backends.mps.is_available():
|
|
torch.mps.manual_seed(seed)
|
|
|
|
def resample(video_fps, video_frames_count, max_target_frames_count, target_fps, start_target_frame ):
|
|
import math
|
|
|
|
video_frame_duration = 1 /video_fps
|
|
target_frame_duration = 1 / target_fps
|
|
|
|
target_time = start_target_frame * target_frame_duration
|
|
frame_no = math.ceil(target_time / video_frame_duration)
|
|
cur_time = frame_no * video_frame_duration
|
|
frame_ids =[]
|
|
while True:
|
|
if max_target_frames_count != 0 and len(frame_ids) >= max_target_frames_count :
|
|
break
|
|
diff = round( (target_time -cur_time) / video_frame_duration , 5)
|
|
add_frames_count = math.ceil( diff)
|
|
frame_no += add_frames_count
|
|
if frame_no >= video_frames_count:
|
|
break
|
|
frame_ids.append(frame_no)
|
|
cur_time += add_frames_count * video_frame_duration
|
|
target_time += target_frame_duration
|
|
frame_ids = frame_ids[:max_target_frames_count]
|
|
return frame_ids
|
|
|
|
import os
|
|
from datetime import datetime
|
|
|
|
def get_file_creation_date(file_path):
|
|
# On Windows
|
|
if os.name == 'nt':
|
|
return datetime.fromtimestamp(os.path.getctime(file_path))
|
|
# On Unix/Linux/Mac (gets last status change, not creation)
|
|
else:
|
|
stat = os.stat(file_path)
|
|
return datetime.fromtimestamp(stat.st_birthtime if hasattr(stat, 'st_birthtime') else stat.st_mtime)
|
|
|
|
def truncate_for_filesystem(s, max_bytes=255):
|
|
if len(s.encode('utf-8')) <= max_bytes: return s
|
|
l, r = 0, len(s)
|
|
while l < r:
|
|
m = (l + r + 1) // 2
|
|
if len(s[:m].encode('utf-8')) <= max_bytes: l = m
|
|
else: r = m - 1
|
|
return s[:l]
|
|
|
|
@lru_cache(maxsize=100)
|
|
def get_video_info(video_path):
|
|
global video_info_cache
|
|
import cv2
|
|
cap = cv2.VideoCapture(video_path)
|
|
|
|
# Get FPS
|
|
fps = round(cap.get(cv2.CAP_PROP_FPS))
|
|
|
|
# Get resolution
|
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
cap.release()
|
|
|
|
return fps, width, height, frame_count
|
|
|
|
def get_video_frame(file_name: str, frame_no: int, return_last_if_missing: bool = False, return_PIL = True) -> torch.Tensor:
|
|
"""Extract nth frame from video as PyTorch tensor normalized to [-1, 1]."""
|
|
cap = cv2.VideoCapture(file_name)
|
|
|
|
if not cap.isOpened():
|
|
raise ValueError(f"Cannot open video: {file_name}")
|
|
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
# Handle out of bounds
|
|
if frame_no >= total_frames or frame_no < 0:
|
|
if return_last_if_missing:
|
|
frame_no = total_frames - 1
|
|
else:
|
|
cap.release()
|
|
raise IndexError(f"Frame {frame_no} out of bounds (0-{total_frames-1})")
|
|
|
|
# Get frame
|
|
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_no)
|
|
ret, frame = cap.read()
|
|
cap.release()
|
|
|
|
if not ret:
|
|
raise ValueError(f"Failed to read frame {frame_no}")
|
|
|
|
# Convert BGR->RGB, reshape to (C,H,W), normalize to [-1,1]
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
if return_PIL:
|
|
return Image.fromarray(frame)
|
|
else:
|
|
return (torch.from_numpy(frame).permute(2, 0, 1).float() / 127.5) - 1.0
|
|
# def get_video_frame(file_name, frame_no):
|
|
# decord.bridge.set_bridge('torch')
|
|
# reader = decord.VideoReader(file_name)
|
|
|
|
# frame = reader.get_batch([frame_no]).squeeze(0)
|
|
# img = Image.fromarray(frame.numpy().astype(np.uint8))
|
|
# return img
|
|
|
|
def convert_image_to_video(image):
|
|
if image is None:
|
|
return None
|
|
|
|
# Convert PIL/numpy image to OpenCV format if needed
|
|
if isinstance(image, np.ndarray):
|
|
# Gradio images are typically RGB, OpenCV expects BGR
|
|
img_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
|
else:
|
|
# Handle PIL Image
|
|
img_array = np.array(image)
|
|
img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
|
|
|
|
height, width = img_bgr.shape[:2]
|
|
|
|
# Create temporary video file (auto-cleaned by Gradio)
|
|
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
out = cv2.VideoWriter(temp_video.name, fourcc, 30.0, (width, height))
|
|
out.write(img_bgr)
|
|
out.release()
|
|
return temp_video.name
|
|
|
|
def resize_lanczos(img, h, w):
|
|
img = (img + 1).float().mul_(127.5)
|
|
img = Image.fromarray(np.clip(img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
|
|
img = img.resize((w,h), resample=Image.Resampling.LANCZOS)
|
|
img = torch.from_numpy(np.array(img).astype(np.float32)).movedim(-1, 0)
|
|
img = img.div(127.5).sub_(1)
|
|
return img
|
|
|
|
def remove_background(img, session=None):
|
|
if session ==None:
|
|
session = new_session()
|
|
img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
|
|
img = remove(img, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
|
|
return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0)
|
|
|
|
|
|
def convert_image_to_tensor(image):
|
|
return torch.from_numpy(np.array(image).astype(np.float32)).div_(127.5).sub_(1.).movedim(-1, 0)
|
|
|
|
def convert_tensor_to_image(t, frame_no = 0):
|
|
if len(t.shape) == 4:
|
|
t = t[:, frame_no]
|
|
return Image.fromarray(t.clone().add_(1.).mul_(127.5).permute(1,2,0).to(torch.uint8).cpu().numpy())
|
|
|
|
def save_image(tensor_image, name, frame_no = -1):
|
|
convert_tensor_to_image(tensor_image, frame_no).save(name)
|
|
|
|
def get_outpainting_full_area_dimensions(frame_height,frame_width, outpainting_dims):
|
|
outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims
|
|
frame_height = int(frame_height * (100 + outpainting_top + outpainting_bottom) / 100)
|
|
frame_width = int(frame_width * (100 + outpainting_left + outpainting_right) / 100)
|
|
return frame_height, frame_width
|
|
|
|
def rgb_bw_to_rgba_mask(img, thresh=127):
|
|
a = img.convert('L').point(lambda p: 255 if p > thresh else 0) # alpha
|
|
out = Image.new('RGBA', img.size, (255, 255, 255, 0)) # white, transparent
|
|
out.putalpha(a) # white where alpha=255
|
|
return out
|
|
|
|
|
|
|
|
def get_outpainting_frame_location(final_height, final_width, outpainting_dims, block_size = 8):
|
|
outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims
|
|
raw_height = int(final_height / ((100 + outpainting_top + outpainting_bottom) / 100))
|
|
height = int(raw_height / block_size) * block_size
|
|
extra_height = raw_height - height
|
|
|
|
raw_width = int(final_width / ((100 + outpainting_left + outpainting_right) / 100))
|
|
width = int(raw_width / block_size) * block_size
|
|
extra_width = raw_width - width
|
|
margin_top = int(outpainting_top/(100 + outpainting_top + outpainting_bottom) * final_height)
|
|
if extra_height != 0 and (outpainting_top + outpainting_bottom) != 0:
|
|
margin_top += int(outpainting_top / (outpainting_top + outpainting_bottom) * extra_height)
|
|
if (margin_top + height) > final_height or outpainting_bottom == 0: margin_top = final_height - height
|
|
margin_left = int(outpainting_left/(100 + outpainting_left + outpainting_right) * final_width)
|
|
if extra_width != 0 and (outpainting_left + outpainting_right) != 0:
|
|
margin_left += int(outpainting_left / (outpainting_left + outpainting_right) * extra_height)
|
|
if (margin_left + width) > final_width or outpainting_right == 0: margin_left = final_width - width
|
|
return height, width, margin_top, margin_left
|
|
|
|
def rescale_and_crop(img, w, h):
|
|
ow, oh = img.size
|
|
target_ratio = w / h
|
|
orig_ratio = ow / oh
|
|
|
|
if orig_ratio > target_ratio:
|
|
# Crop width first
|
|
nw = int(oh * target_ratio)
|
|
img = img.crop(((ow - nw) // 2, 0, (ow + nw) // 2, oh))
|
|
else:
|
|
# Crop height first
|
|
nh = int(ow / target_ratio)
|
|
img = img.crop((0, (oh - nh) // 2, ow, (oh + nh) // 2))
|
|
|
|
return img.resize((w, h), Image.LANCZOS)
|
|
|
|
def calculate_new_dimensions(canvas_height, canvas_width, image_height, image_width, fit_into_canvas, block_size = 16):
|
|
if fit_into_canvas == None or fit_into_canvas == 2:
|
|
# return image_height, image_width
|
|
return canvas_height, canvas_width
|
|
if fit_into_canvas == 1:
|
|
scale1 = min(canvas_height / image_height, canvas_width / image_width)
|
|
scale2 = min(canvas_width / image_height, canvas_height / image_width)
|
|
scale = max(scale1, scale2)
|
|
else: #0 or #2 (crop)
|
|
scale = (canvas_height * canvas_width / (image_height * image_width))**(1/2)
|
|
|
|
new_height = round( image_height * scale / block_size) * block_size
|
|
new_width = round( image_width * scale / block_size) * block_size
|
|
return new_height, new_width
|
|
|
|
def calculate_dimensions_and_resize_image(image, canvas_height, canvas_width, fit_into_canvas, fit_crop, block_size = 16):
|
|
if fit_crop:
|
|
image = rescale_and_crop(image, canvas_width, canvas_height)
|
|
new_width, new_height = image.size
|
|
else:
|
|
image_width, image_height = image.size
|
|
new_height, new_width = calculate_new_dimensions(canvas_height, canvas_width, image_height, image_width, fit_into_canvas, block_size = block_size )
|
|
image = image.resize((new_width, new_height), resample=Image.Resampling.LANCZOS)
|
|
return image, new_height, new_width
|
|
|
|
def resize_and_remove_background(img_list, budget_width, budget_height, rm_background, any_background_ref, fit_into_canvas = 0, block_size= 16, outpainting_dims = None, background_ref_outpainted = True, inpaint_color = 127.5 ):
|
|
if rm_background:
|
|
session = new_session()
|
|
|
|
output_list =[]
|
|
output_mask_list =[]
|
|
for i, img in enumerate(img_list):
|
|
width, height = img.size
|
|
resized_mask = None
|
|
if fit_into_canvas == None or any_background_ref == 1 and i==0 or any_background_ref == 2:
|
|
if outpainting_dims is not None and background_ref_outpainted:
|
|
resized_image, resized_mask = fit_image_into_canvas(img, (budget_height, budget_width), inpaint_color, full_frame = True, outpainting_dims = outpainting_dims, return_mask= True, return_image= True)
|
|
elif img.size != (budget_width, budget_height):
|
|
resized_image= img.resize((budget_width, budget_height), resample=Image.Resampling.LANCZOS)
|
|
else:
|
|
resized_image =img
|
|
elif fit_into_canvas == 1:
|
|
white_canvas = np.ones((budget_height, budget_width, 3), dtype=np.uint8) * 255
|
|
scale = min(budget_height / height, budget_width / width)
|
|
new_height = int(height * scale)
|
|
new_width = int(width * scale)
|
|
resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS)
|
|
top = (budget_height - new_height) // 2
|
|
left = (budget_width - new_width) // 2
|
|
white_canvas[top:top + new_height, left:left + new_width] = np.array(resized_image)
|
|
resized_image = Image.fromarray(white_canvas)
|
|
else:
|
|
scale = (budget_height * budget_width / (height * width))**(1/2)
|
|
new_height = int( round(height * scale / block_size) * block_size)
|
|
new_width = int( round(width * scale / block_size) * block_size)
|
|
resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS)
|
|
if rm_background and not (any_background_ref and i==0 or any_background_ref == 2) :
|
|
# resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1,alpha_matting_background_threshold = 70, alpha_foreground_background_threshold = 100, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
|
|
resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
|
|
output_list.append(resized_image) #alpha_matting_background_threshold = 30, alpha_foreground_background_threshold = 200,
|
|
output_mask_list.append(resized_mask)
|
|
return output_list, output_mask_list
|
|
|
|
def fit_image_into_canvas(ref_img, image_size, canvas_tf_bg =127.5, device ="cpu", full_frame = False, outpainting_dims = None, return_mask = False, return_image = False):
|
|
from shared.utils.utils import save_image
|
|
inpaint_color = canvas_tf_bg / 127.5 - 1
|
|
|
|
ref_width, ref_height = ref_img.size
|
|
if (ref_height, ref_width) == image_size and outpainting_dims == None:
|
|
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
|
|
canvas = torch.zeros_like(ref_img) if return_mask else None
|
|
else:
|
|
if outpainting_dims != None:
|
|
final_height, final_width = image_size
|
|
canvas_height, canvas_width, margin_top, margin_left = get_outpainting_frame_location(final_height, final_width, outpainting_dims, 1)
|
|
else:
|
|
canvas_height, canvas_width = image_size
|
|
if full_frame:
|
|
new_height = canvas_height
|
|
new_width = canvas_width
|
|
top = left = 0
|
|
else:
|
|
# if fill_max and (canvas_height - new_height) < 16:
|
|
# new_height = canvas_height
|
|
# if fill_max and (canvas_width - new_width) < 16:
|
|
# new_width = canvas_width
|
|
scale = min(canvas_height / ref_height, canvas_width / ref_width)
|
|
new_height = int(ref_height * scale)
|
|
new_width = int(ref_width * scale)
|
|
top = (canvas_height - new_height) // 2
|
|
left = (canvas_width - new_width) // 2
|
|
ref_img = ref_img.resize((new_width, new_height), resample=Image.Resampling.LANCZOS)
|
|
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
|
|
if outpainting_dims != None:
|
|
canvas = torch.full((3, 1, final_height, final_width), inpaint_color, dtype= torch.float, device=device) # [-1, 1]
|
|
canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = ref_img
|
|
else:
|
|
canvas = torch.full((3, 1, canvas_height, canvas_width), inpaint_color, dtype= torch.float, device=device) # [-1, 1]
|
|
canvas[:, :, top:top + new_height, left:left + new_width] = ref_img
|
|
ref_img = canvas
|
|
canvas = None
|
|
if return_mask:
|
|
if outpainting_dims != None:
|
|
canvas = torch.ones((1, 1, final_height, final_width), dtype= torch.float, device=device) # [-1, 1]
|
|
canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = 0
|
|
else:
|
|
canvas = torch.ones((1, 1, canvas_height, canvas_width), dtype= torch.float, device=device) # [-1, 1]
|
|
canvas[:, :, top:top + new_height, left:left + new_width] = 0
|
|
canvas = canvas.to(device)
|
|
if return_image:
|
|
return convert_tensor_to_image(ref_img), canvas
|
|
|
|
return ref_img.to(device), canvas
|
|
|
|
def prepare_video_guide_and_mask( video_guides, video_masks, pre_video_guide, image_size, current_video_length = 81, latent_size = 4, any_mask = False, any_guide_padding = False, guide_inpaint_color = 127.5, extract_guide_from_window_start = False, keep_video_guide_frames = [], inject_frames = [], outpainting_dims = None ):
|
|
src_videos, src_masks = [], []
|
|
inpaint_color = guide_inpaint_color/127.5 - 1
|
|
prepend_count = pre_video_guide.shape[1] if not extract_guide_from_window_start and pre_video_guide is not None else 0
|
|
for guide_no, (cur_video_guide, cur_video_mask) in enumerate(zip(video_guides, video_masks)):
|
|
src_video = src_mask = None
|
|
if cur_video_guide is not None:
|
|
src_video = cur_video_guide.permute(3, 0, 1, 2).float().div_(127.5).sub_(1.) # c, f, h, w
|
|
if cur_video_mask is not None and any_mask:
|
|
src_mask = cur_video_mask.permute(3, 0, 1, 2).float().div_(255)[0:1] # c, f, h, w
|
|
if pre_video_guide is not None and not extract_guide_from_window_start:
|
|
src_video = pre_video_guide if src_video is None else torch.cat( [pre_video_guide, src_video], dim=1)
|
|
if any_mask:
|
|
src_mask = torch.zeros_like(pre_video_guide[0:1]) if src_mask is None else torch.cat( [torch.zeros_like(pre_video_guide[0:1]), src_mask], dim=1)
|
|
if src_video is None:
|
|
if any_guide_padding:
|
|
src_video = torch.full( (3, current_video_length, *image_size ), inpaint_color, dtype = torch.float, device= "cpu")
|
|
if any_mask:
|
|
src_mask = torch.zeros_like(src_video[0:1])
|
|
elif src_video.shape[1] < current_video_length:
|
|
if any_guide_padding:
|
|
src_video = torch.cat([src_video, torch.full( (3, current_video_length - src_video.shape[1], *src_video.shape[-2:] ), inpaint_color, dtype = src_video.dtype, device= src_video.device) ], dim=1)
|
|
if cur_video_mask is not None and any_mask:
|
|
src_mask = torch.cat([src_mask, torch.full( (1, current_video_length - src_mask.shape[1], *src_mask.shape[-2:] ), 1, dtype = src_video.dtype, device= src_video.device) ], dim=1)
|
|
else:
|
|
new_num_frames = (src_video.shape[1] - 1) // latent_size * latent_size + 1
|
|
src_video = src_video[:, :new_num_frames]
|
|
if any_mask:
|
|
src_mask = src_mask[:, :new_num_frames]
|
|
|
|
for k, keep in enumerate(keep_video_guide_frames):
|
|
if not keep:
|
|
pos = prepend_count + k
|
|
src_video[:, pos:pos+1] = inpaint_color
|
|
src_mask[:, pos:pos+1] = 1
|
|
|
|
for k, frame in enumerate(inject_frames):
|
|
if frame != None:
|
|
pos = prepend_count + k
|
|
src_video[:, pos:pos+1], src_mask[:, pos:pos+1] = fit_image_into_canvas(frame, image_size, inpaint_color, device, True, outpainting_dims, return_mask= True)
|
|
|
|
src_videos.append(src_video)
|
|
src_masks.append(src_mask)
|
|
return src_videos, src_masks
|
|
|
|
|