mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 22:26:36 +00:00
418 lines
19 KiB
Python
418 lines
19 KiB
Python
import math
|
||
import os
|
||
from typing import List
|
||
from typing import Optional
|
||
from typing import Tuple
|
||
from typing import Union
|
||
import logging
|
||
import numpy as np
|
||
import torch
|
||
from diffusers.image_processor import PipelineImageInput
|
||
from diffusers.utils.torch_utils import randn_tensor
|
||
from diffusers.video_processor import VideoProcessor
|
||
from tqdm import tqdm
|
||
from .modules.model import WanModel
|
||
from .modules.t5 import T5EncoderModel
|
||
from .modules.vae import WanVAE
|
||
from wan.modules.posemb_layers import get_rotary_pos_embed
|
||
from wan.utils.utils import calculate_new_dimensions
|
||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
||
get_sampling_sigmas, retrieve_timesteps)
|
||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||
|
||
class DTT2V:
|
||
|
||
|
||
def __init__(
|
||
self,
|
||
config,
|
||
checkpoint_dir,
|
||
rank=0,
|
||
model_filename = None,
|
||
text_encoder_filename = None,
|
||
quantizeTransformer = False,
|
||
dtype = torch.bfloat16,
|
||
VAE_dtype = torch.float32,
|
||
mixed_precision_transformer = False,
|
||
):
|
||
self.device = torch.device(f"cuda")
|
||
self.config = config
|
||
self.rank = rank
|
||
self.dtype = dtype
|
||
self.num_train_timesteps = config.num_train_timesteps
|
||
self.param_dtype = config.param_dtype
|
||
|
||
self.text_encoder = T5EncoderModel(
|
||
text_len=config.text_len,
|
||
dtype=config.t5_dtype,
|
||
device=torch.device('cpu'),
|
||
checkpoint_path=text_encoder_filename,
|
||
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
||
shard_fn= None)
|
||
|
||
self.vae_stride = config.vae_stride
|
||
self.patch_size = config.patch_size
|
||
|
||
self.vae = WanVAE(
|
||
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype,
|
||
device=self.device)
|
||
|
||
logging.info(f"Creating WanModel from {model_filename[-1]}")
|
||
from mmgp import offload
|
||
# model_filename = "model.safetensors"
|
||
# model_filename = "c:/temp/diffusion_pytorch_model-00001-of-00006.safetensors"
|
||
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False) # , forcedConfigPath="c:/temp/config _df720.json")
|
||
# offload.load_model_data(self.model, "recam.ckpt")
|
||
# self.model.cpu()
|
||
# dtype = torch.float16
|
||
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
|
||
offload.change_dtype(self.model, dtype, True)
|
||
# offload.save_model(self.model, "sky_reels2_diffusion_forcing_1.3B_mbf16.safetensors", config_file_path="config.json")
|
||
# offload.save_model(self.model, "sky_reels2_diffusion_forcing_720p_14B_quanto_mbf16_int8.safetensors", do_quantize= True, config_file_path="c:/temp/config _df720.json")
|
||
# offload.save_model(self.model, "rtfp16_int8.safetensors", do_quantize= "config.json")
|
||
|
||
self.model.eval().requires_grad_(False)
|
||
|
||
self.scheduler = FlowUniPCMultistepScheduler()
|
||
|
||
@property
|
||
def do_classifier_free_guidance(self) -> bool:
|
||
return self._guidance_scale > 1
|
||
|
||
def encode_image(
|
||
self, image_start: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0
|
||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
||
# prefix_video
|
||
prefix_video = np.array(image_start.resize((width, height))).transpose(2, 0, 1)
|
||
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
|
||
if prefix_video.dtype == torch.uint8:
|
||
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
|
||
prefix_video = prefix_video.to(self.device)
|
||
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]] # [(c, f, h, w)]
|
||
if prefix_video[0].shape[1] % causal_block_size != 0:
|
||
truncate_len = prefix_video[0].shape[1] % causal_block_size
|
||
print("the length of prefix video is truncated for the casual block size alignment.")
|
||
prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
|
||
predix_video_latent_length = prefix_video[0].shape[1]
|
||
return prefix_video, predix_video_latent_length
|
||
|
||
def prepare_latents(
|
||
self,
|
||
shape: Tuple[int],
|
||
dtype: Optional[torch.dtype] = None,
|
||
device: Optional[torch.device] = None,
|
||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||
) -> torch.Tensor:
|
||
return randn_tensor(shape, generator, device=device, dtype=dtype)
|
||
|
||
def generate_timestep_matrix(
|
||
self,
|
||
num_frames,
|
||
step_template,
|
||
base_num_frames,
|
||
ar_step=5,
|
||
num_pre_ready=0,
|
||
casual_block_size=1,
|
||
shrink_interval_with_mask=False,
|
||
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
|
||
step_matrix, step_index = [], []
|
||
update_mask, valid_interval = [], []
|
||
num_iterations = len(step_template) + 1
|
||
num_frames_block = num_frames // casual_block_size
|
||
base_num_frames_block = base_num_frames // casual_block_size
|
||
if base_num_frames_block < num_frames_block:
|
||
infer_step_num = len(step_template)
|
||
gen_block = base_num_frames_block
|
||
min_ar_step = infer_step_num / gen_block
|
||
assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
|
||
# print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
|
||
step_template = torch.cat(
|
||
[
|
||
torch.tensor([999], dtype=torch.int64, device=step_template.device),
|
||
step_template.long(),
|
||
torch.tensor([0], dtype=torch.int64, device=step_template.device),
|
||
]
|
||
) # to handle the counter in row works starting from 1
|
||
pre_row = torch.zeros(num_frames_block, dtype=torch.long)
|
||
if num_pre_ready > 0:
|
||
pre_row[: num_pre_ready // casual_block_size] = num_iterations
|
||
|
||
while torch.all(pre_row >= (num_iterations - 1)) == False:
|
||
new_row = torch.zeros(num_frames_block, dtype=torch.long)
|
||
for i in range(num_frames_block):
|
||
if i == 0 or pre_row[i - 1] >= (
|
||
num_iterations - 1
|
||
): # the first frame or the last frame is completely denoised
|
||
new_row[i] = pre_row[i] + 1
|
||
else:
|
||
new_row[i] = new_row[i - 1] - ar_step
|
||
new_row = new_row.clamp(0, num_iterations)
|
||
|
||
update_mask.append(
|
||
(new_row != pre_row) & (new_row != num_iterations)
|
||
) # False: no need to update, True: need to update
|
||
step_index.append(new_row)
|
||
step_matrix.append(step_template[new_row])
|
||
pre_row = new_row
|
||
|
||
# for long video we split into several sequences, base_num_frames is set to the model max length (for training)
|
||
terminal_flag = base_num_frames_block
|
||
if shrink_interval_with_mask:
|
||
idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
|
||
update_mask = update_mask[0]
|
||
update_mask_idx = idx_sequence[update_mask]
|
||
last_update_idx = update_mask_idx[-1].item()
|
||
terminal_flag = last_update_idx + 1
|
||
# for i in range(0, len(update_mask)):
|
||
for curr_mask in update_mask:
|
||
if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
|
||
terminal_flag += 1
|
||
valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
|
||
|
||
step_update_mask = torch.stack(update_mask, dim=0)
|
||
step_index = torch.stack(step_index, dim=0)
|
||
step_matrix = torch.stack(step_matrix, dim=0)
|
||
|
||
if casual_block_size > 1:
|
||
step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
|
||
step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
|
||
step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
|
||
valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
|
||
|
||
return step_matrix, step_index, step_update_mask, valid_interval
|
||
|
||
@torch.no_grad()
|
||
def generate(
|
||
self,
|
||
input_prompt: Union[str, List[str]],
|
||
n_prompt: Union[str, List[str]] = "",
|
||
image_start: PipelineImageInput = None,
|
||
input_video = None,
|
||
height: int = 480,
|
||
width: int = 832,
|
||
fit_into_canvas = True,
|
||
frame_num: int = 97,
|
||
sampling_steps: int = 50,
|
||
shift: float = 1.0,
|
||
guide_scale: float = 5.0,
|
||
seed: float = 0.0,
|
||
overlap_noise: int = 0,
|
||
ar_step: int = 5,
|
||
causal_block_size: int = 5,
|
||
causal_attention: bool = True,
|
||
fps: int = 24,
|
||
VAE_tile_size = 0,
|
||
joint_pass = False,
|
||
slg_layers = None,
|
||
slg_start = 0.0,
|
||
slg_end = 1.0,
|
||
callback = None,
|
||
**bbargs
|
||
):
|
||
self._interrupt = False
|
||
generator = torch.Generator(device=self.device)
|
||
generator.manual_seed(seed)
|
||
self._guidance_scale = guide_scale
|
||
frame_num = max(17, frame_num) # must match causal_block_size for value of 5
|
||
frame_num = int( round( (frame_num - 17) / 20)* 20 + 17 )
|
||
|
||
if ar_step == 0:
|
||
causal_block_size = 1
|
||
causal_attention = False
|
||
|
||
i2v_extra_kwrags = {}
|
||
prefix_video = None
|
||
predix_video_latent_length = 0
|
||
|
||
if input_video != None:
|
||
_ , _ , height, width = input_video.shape
|
||
elif image_start != None:
|
||
image_start = image_start[0]
|
||
frame_width, frame_height = image_start.size
|
||
height, width = calculate_new_dimensions(height, width, frame_height, frame_width, fit_into_canvas)
|
||
image_start = np.array(image_start.resize((width, height))).transpose(2, 0, 1)
|
||
|
||
|
||
latent_length = (frame_num - 1) // 4 + 1
|
||
latent_height = height // 8
|
||
latent_width = width // 8
|
||
|
||
if self._interrupt:
|
||
return None
|
||
prompt_embeds = self.text_encoder([input_prompt], self.device)[0]
|
||
prompt_embeds = prompt_embeds.to(self.dtype).to(self.device)
|
||
if self.do_classifier_free_guidance:
|
||
negative_prompt_embeds = self.text_encoder([n_prompt], self.device)[0]
|
||
negative_prompt_embeds = negative_prompt_embeds.to(self.dtype).to(self.device)
|
||
|
||
if self._interrupt:
|
||
return None
|
||
|
||
self.scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
|
||
init_timesteps = self.scheduler.timesteps
|
||
fps_embeds = [fps] #* prompt_embeds[0].shape[0]
|
||
fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
|
||
|
||
|
||
output_video = input_video
|
||
|
||
if image_start is not None or output_video is not None: # i !=0
|
||
if output_video is not None:
|
||
prefix_video = output_video.to(self.device)
|
||
else:
|
||
causal_block_size = 1
|
||
causal_attention = False
|
||
ar_step = 0
|
||
prefix_video = image_start
|
||
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
|
||
if prefix_video.dtype == torch.uint8:
|
||
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
|
||
prefix_video = prefix_video.to(self.device)
|
||
prefix_video = self.vae.encode(prefix_video.unsqueeze(0))[0] # [(c, f, h, w)]
|
||
predix_video_latent_length = prefix_video.shape[1]
|
||
truncate_len = predix_video_latent_length % causal_block_size
|
||
if truncate_len != 0:
|
||
if truncate_len == predix_video_latent_length:
|
||
causal_block_size = 1
|
||
causal_attention = False
|
||
ar_step = 0
|
||
else:
|
||
print("the length of prefix video is truncated for the casual block size alignment.")
|
||
predix_video_latent_length -= truncate_len
|
||
prefix_video = prefix_video[:, : predix_video_latent_length]
|
||
|
||
base_num_frames_iter = latent_length
|
||
latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
|
||
latents = self.prepare_latents(
|
||
latent_shape, dtype=torch.float32, device=self.device, generator=generator
|
||
)
|
||
if prefix_video is not None:
|
||
latents[:, :predix_video_latent_length] = prefix_video.to(torch.float32)
|
||
step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
|
||
base_num_frames_iter,
|
||
init_timesteps,
|
||
base_num_frames_iter,
|
||
ar_step,
|
||
predix_video_latent_length,
|
||
causal_block_size,
|
||
)
|
||
sample_schedulers = []
|
||
for _ in range(base_num_frames_iter):
|
||
sample_scheduler = FlowUniPCMultistepScheduler(
|
||
num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
|
||
)
|
||
sample_scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
|
||
sample_schedulers.append(sample_scheduler)
|
||
sample_schedulers_counter = [0] * base_num_frames_iter
|
||
|
||
updated_num_steps= len(step_matrix)
|
||
if callback != None:
|
||
callback(-1, None, True, override_num_inference_steps = updated_num_steps)
|
||
if self.model.enable_teacache:
|
||
x_count = 2 if self.do_classifier_free_guidance else 1
|
||
self.model.previous_residual = [None] * x_count
|
||
time_steps_comb = []
|
||
self.model.num_steps = updated_num_steps
|
||
for i, timestep_i in enumerate(step_matrix):
|
||
valid_interval_start, valid_interval_end = valid_interval[i]
|
||
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
|
||
if overlap_noise > 0 and valid_interval_start < predix_video_latent_length:
|
||
timestep[:, valid_interval_start:predix_video_latent_length] = overlap_noise
|
||
time_steps_comb.append(timestep)
|
||
self.model.compute_teacache_threshold(self.model.teacache_start_step, time_steps_comb, self.model.teacache_multiplier)
|
||
del time_steps_comb
|
||
from mmgp import offload
|
||
freqs = get_rotary_pos_embed(latents.shape[1 :], enable_RIFLEx= False)
|
||
kwrags = {
|
||
"freqs" :freqs,
|
||
"fps" : fps_embeds,
|
||
"causal_block_size" : causal_block_size,
|
||
"causal_attention" : causal_attention,
|
||
"callback" : callback,
|
||
"pipeline" : self,
|
||
}
|
||
kwrags.update(i2v_extra_kwrags)
|
||
|
||
for i, timestep_i in enumerate(tqdm(step_matrix)):
|
||
kwrags["slg_layers"] = slg_layers if int(slg_start * updated_num_steps) <= i < int(slg_end * updated_num_steps) else None
|
||
|
||
offload.set_step_no_for_lora(self.model, i)
|
||
update_mask_i = step_update_mask[i]
|
||
valid_interval_start, valid_interval_end = valid_interval[i]
|
||
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
|
||
latent_model_input = latents[:, valid_interval_start:valid_interval_end, :, :].clone()
|
||
if overlap_noise > 0 and valid_interval_start < predix_video_latent_length:
|
||
noise_factor = 0.001 * overlap_noise
|
||
timestep_for_noised_condition = overlap_noise
|
||
latent_model_input[:, valid_interval_start:predix_video_latent_length] = (
|
||
latent_model_input[:, valid_interval_start:predix_video_latent_length]
|
||
* (1.0 - noise_factor)
|
||
+ torch.randn_like(
|
||
latent_model_input[:, valid_interval_start:predix_video_latent_length]
|
||
)
|
||
* noise_factor
|
||
)
|
||
timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
|
||
kwrags.update({
|
||
"t" : timestep,
|
||
"current_step" : i,
|
||
})
|
||
|
||
# with torch.autocast(device_type="cuda"):
|
||
if True:
|
||
if not self.do_classifier_free_guidance:
|
||
noise_pred = self.model(
|
||
x=[latent_model_input],
|
||
context=[prompt_embeds],
|
||
**kwrags,
|
||
)[0]
|
||
if self._interrupt:
|
||
return None
|
||
noise_pred= noise_pred.to(torch.float32)
|
||
else:
|
||
if joint_pass:
|
||
noise_pred_cond, noise_pred_uncond = self.model(
|
||
x=[latent_model_input, latent_model_input],
|
||
context= [prompt_embeds, negative_prompt_embeds],
|
||
**kwrags,
|
||
)
|
||
if self._interrupt:
|
||
return None
|
||
else:
|
||
noise_pred_cond = self.model(
|
||
x=[latent_model_input],
|
||
x_id=0,
|
||
context=[prompt_embeds],
|
||
**kwrags,
|
||
)[0]
|
||
if self._interrupt:
|
||
return None
|
||
noise_pred_uncond = self.model(
|
||
x=[latent_model_input],
|
||
x_id=1,
|
||
context=[negative_prompt_embeds],
|
||
**kwrags,
|
||
)[0]
|
||
if self._interrupt:
|
||
return None
|
||
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond)
|
||
del noise_pred_cond, noise_pred_uncond
|
||
for idx in range(valid_interval_start, valid_interval_end):
|
||
if update_mask_i[idx].item():
|
||
latents[:, idx] = sample_schedulers[idx].step(
|
||
noise_pred[:, idx - valid_interval_start],
|
||
timestep_i[idx],
|
||
latents[:, idx],
|
||
return_dict=False,
|
||
generator=generator,
|
||
)[0]
|
||
sample_schedulers_counter[idx] += 1
|
||
if callback is not None:
|
||
callback(i, latents.squeeze(0), False)
|
||
|
||
x0 = latents.unsqueeze(0)
|
||
videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]]
|
||
output_video = videos[0].clamp(-1, 1).cpu() # c, f, h, w
|
||
return output_video
|