mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			588 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			588 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
import gc
 | 
						|
import logging
 | 
						|
import math
 | 
						|
import os
 | 
						|
import random
 | 
						|
import sys
 | 
						|
import types
 | 
						|
from contextlib import contextmanager
 | 
						|
from functools import partial
 | 
						|
from mmgp import offload
 | 
						|
import torch
 | 
						|
import torch.nn as nn
 | 
						|
import torch.cuda.amp as amp
 | 
						|
import torch.distributed as dist
 | 
						|
from tqdm import tqdm
 | 
						|
from PIL import Image
 | 
						|
import torchvision.transforms.functional as TF
 | 
						|
import torch.nn.functional as F
 | 
						|
from .distributed.fsdp import shard_model
 | 
						|
from .modules.model import WanModel
 | 
						|
from .modules.t5 import T5EncoderModel
 | 
						|
from .modules.vae import WanVAE
 | 
						|
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
						|
                               get_sampling_sigmas, retrieve_timesteps)
 | 
						|
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
						|
from wan.modules.posemb_layers import get_rotary_pos_embed
 | 
						|
from .utils.vace_preprocessor import VaceVideoProcessor
 | 
						|
from wan.utils.basic_flowmatch import FlowMatchScheduler
 | 
						|
 | 
						|
def optimized_scale(positive_flat, negative_flat):
 | 
						|
 | 
						|
    # Calculate dot production
 | 
						|
    dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
 | 
						|
 | 
						|
    # Squared norm of uncondition
 | 
						|
    squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
 | 
						|
 | 
						|
    # st_star = v_cond^T * v_uncond / ||v_uncond||^2
 | 
						|
    st_star = dot_product / squared_norm
 | 
						|
    
 | 
						|
    return st_star
 | 
						|
 | 
						|
 | 
						|
class WanT2V:
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        config,
 | 
						|
        checkpoint_dir,
 | 
						|
        rank=0,
 | 
						|
        model_filename = None,
 | 
						|
        text_encoder_filename = None,
 | 
						|
        quantizeTransformer = False,
 | 
						|
        dtype = torch.bfloat16,
 | 
						|
        VAE_dtype = torch.float32,
 | 
						|
        mixed_precision_transformer = False
 | 
						|
    ):
 | 
						|
        self.device = torch.device(f"cuda")
 | 
						|
        self.config = config
 | 
						|
        self.rank = rank
 | 
						|
        self.dtype = dtype
 | 
						|
        self.num_train_timesteps = config.num_train_timesteps
 | 
						|
        self.param_dtype = config.param_dtype
 | 
						|
 | 
						|
        self.text_encoder = T5EncoderModel(
 | 
						|
            text_len=config.text_len,
 | 
						|
            dtype=config.t5_dtype,
 | 
						|
            device=torch.device('cpu'),
 | 
						|
            checkpoint_path=text_encoder_filename,
 | 
						|
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
						|
            shard_fn= None)
 | 
						|
 | 
						|
        self.vae_stride = config.vae_stride
 | 
						|
        self.patch_size = config.patch_size 
 | 
						|
        
 | 
						|
        self.vae = WanVAE(
 | 
						|
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype,
 | 
						|
            device=self.device)
 | 
						|
        
 | 
						|
        logging.info(f"Creating WanModel from {model_filename[-1]}")
 | 
						|
        from mmgp import offload
 | 
						|
        # model_filename = "c:/temp/vace1.3/diffusion_pytorch_model.safetensors"
 | 
						|
        # model_filename = "vace14B_quanto_bf16_int8.safetensors"
 | 
						|
        # model_filename = "c:/temp/movii/diffusion_pytorch_model-00001-of-00007.safetensors"
 | 
						|
        # config_filename= "c:/temp/movii/config.json"
 | 
						|
        self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False) # , forcedConfigPath= config_filename)
 | 
						|
        # offload.load_model_data(self.model, "e:/vace.safetensors")
 | 
						|
        # offload.load_model_data(self.model, "c:/temp/Phantom-Wan-1.3B.pth")
 | 
						|
        # self.model.to(torch.bfloat16)
 | 
						|
        # self.model.cpu()
 | 
						|
        self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
 | 
						|
        # dtype = torch.bfloat16
 | 
						|
        offload.change_dtype(self.model, dtype, True)
 | 
						|
        # offload.save_model(self.model, "wan2.1_moviigen_14B_mbf16.safetensors", config_file_path=config_filename)
 | 
						|
        # offload.save_model(self.model, "wan2.1_moviigen_14B_quanto_fp16_int8.safetensors", do_quantize= True, config_file_path=config_filename)
 | 
						|
        self.model.eval().requires_grad_(False)
 | 
						|
 | 
						|
 | 
						|
        self.sample_neg_prompt = config.sample_neg_prompt
 | 
						|
 | 
						|
        if "Vace" in model_filename[-1]:
 | 
						|
            self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
 | 
						|
                                            min_area=480*832,
 | 
						|
                                            max_area=480*832,
 | 
						|
                                            min_fps=config.sample_fps,
 | 
						|
                                            max_fps=config.sample_fps,
 | 
						|
                                            zero_start=True,
 | 
						|
                                            seq_len=32760,
 | 
						|
                                            keep_last=True)
 | 
						|
 | 
						|
            self.adapt_vace_model()
 | 
						|
 | 
						|
    def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0, overlapped_latents = None):
 | 
						|
        if ref_images is None:
 | 
						|
            ref_images = [None] * len(frames)
 | 
						|
        else:
 | 
						|
            assert len(frames) == len(ref_images)
 | 
						|
 | 
						|
        if masks is None:
 | 
						|
            latents = self.vae.encode(frames, tile_size = tile_size)
 | 
						|
        else:
 | 
						|
            inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
 | 
						|
            reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
 | 
						|
            inactive = self.vae.encode(inactive, tile_size = tile_size)
 | 
						|
            self.toto = inactive[0].clone() 
 | 
						|
            if overlapped_latents  != None : 
 | 
						|
                # inactive[0][:, 0:1] = self.vae.encode([frames[0][:, 0:1]], tile_size = tile_size)[0] # redundant
 | 
						|
                inactive[0][:, 1:overlapped_latents.shape[1] + 1] = overlapped_latents
 | 
						|
 | 
						|
            reactive = self.vae.encode(reactive, tile_size = tile_size)
 | 
						|
            latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
 | 
						|
 | 
						|
        cat_latents = []
 | 
						|
        for latent, refs in zip(latents, ref_images):
 | 
						|
            if refs is not None:
 | 
						|
                if masks is None:
 | 
						|
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
 | 
						|
                else:
 | 
						|
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
 | 
						|
                    ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
 | 
						|
                assert all([x.shape[1] == 1 for x in ref_latent])
 | 
						|
                latent = torch.cat([*ref_latent, latent], dim=1)
 | 
						|
            cat_latents.append(latent)
 | 
						|
        return cat_latents
 | 
						|
 | 
						|
    def vace_encode_masks(self, masks, ref_images=None):
 | 
						|
        if ref_images is None:
 | 
						|
            ref_images = [None] * len(masks)
 | 
						|
        else:
 | 
						|
            assert len(masks) == len(ref_images)
 | 
						|
 | 
						|
        result_masks = []
 | 
						|
        for mask, refs in zip(masks, ref_images):
 | 
						|
            c, depth, height, width = mask.shape
 | 
						|
            new_depth = int((depth + 3) // self.vae_stride[0])
 | 
						|
            height = 2 * (int(height) // (self.vae_stride[1] * 2))
 | 
						|
            width = 2 * (int(width) // (self.vae_stride[2] * 2))
 | 
						|
 | 
						|
            # reshape
 | 
						|
            mask = mask[0, :, :, :]
 | 
						|
            mask = mask.view(
 | 
						|
                depth, height, self.vae_stride[1], width, self.vae_stride[1]
 | 
						|
            )  # depth, height, 8, width, 8
 | 
						|
            mask = mask.permute(2, 4, 0, 1, 3)  # 8, 8, depth, height, width
 | 
						|
            mask = mask.reshape(
 | 
						|
                self.vae_stride[1] * self.vae_stride[2], depth, height, width
 | 
						|
            )  # 8*8, depth, height, width
 | 
						|
 | 
						|
            # interpolation
 | 
						|
            mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
 | 
						|
 | 
						|
            if refs is not None:
 | 
						|
                length = len(refs)
 | 
						|
                mask_pad = torch.zeros_like(mask[:, :length, :, :])
 | 
						|
                mask = torch.cat((mask_pad, mask), dim=1)
 | 
						|
            result_masks.append(mask)
 | 
						|
        return result_masks
 | 
						|
 | 
						|
    def vace_latent(self, z, m):
 | 
						|
        return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
 | 
						|
 | 
						|
    def prepare_source(self, src_video, src_mask, src_ref_images, total_frames, image_size,  device, original_video = False, keep_frames= [], start_frame = 0,  fit_into_canvas = True, pre_src_video = None):
 | 
						|
        image_sizes = []
 | 
						|
        trim_video = len(keep_frames)
 | 
						|
        canvas_height, canvas_width = image_size
 | 
						|
 | 
						|
        for i, (sub_src_video, sub_src_mask, sub_pre_src_video) in enumerate(zip(src_video, src_mask,pre_src_video)):
 | 
						|
            prepend_count = 0 if sub_pre_src_video == None else sub_pre_src_video.shape[1]
 | 
						|
            num_frames = total_frames - prepend_count 
 | 
						|
            if sub_src_mask is not None and sub_src_video is not None:
 | 
						|
                src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame, canvas_height = canvas_height, canvas_width = canvas_width, fit_into_canvas = fit_into_canvas)
 | 
						|
                # src_video is [-1, 1] (at this function output), 0 = inpainting area (in fact 127  in [0, 255])
 | 
						|
                # src_mask is [-1, 1] (at this function output), 0 = preserve original video (in fact 127  in [0, 255]) and 1 = Inpainting (in fact 255  in [0, 255])
 | 
						|
                src_video[i] = src_video[i].to(device)
 | 
						|
                src_mask[i] = src_mask[i].to(device)
 | 
						|
                if prepend_count > 0:
 | 
						|
                    src_video[i] =  torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
 | 
						|
                    src_mask[i] =  torch.cat( [torch.full_like(sub_pre_src_video, -1.0), src_mask[i]] ,1)
 | 
						|
                src_video_shape = src_video[i].shape
 | 
						|
                if src_video_shape[1] != total_frames:
 | 
						|
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						|
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						|
                src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
 | 
						|
                image_sizes.append(src_video[i].shape[2:])
 | 
						|
            elif sub_src_video is None:
 | 
						|
                if prepend_count > 0:
 | 
						|
                    src_video[i] =  torch.cat( [sub_pre_src_video, torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)], dim=1)
 | 
						|
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), torch.ones((3, num_frames, image_size[0], image_size[1]), device=device)] ,1)
 | 
						|
                else:
 | 
						|
                    src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
 | 
						|
                    src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
						|
                image_sizes.append(image_size)
 | 
						|
            else:
 | 
						|
                src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame, canvas_height = canvas_height, canvas_width = canvas_width, fit_into_canvas = fit_into_canvas)
 | 
						|
                src_video[i] = src_video[i].to(device)
 | 
						|
                src_mask[i] = torch.zeros_like(src_video[i], device=device) if original_video else torch.ones_like(src_video[i], device=device)
 | 
						|
                if prepend_count > 0:
 | 
						|
                    src_video[i] =  torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
 | 
						|
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1)
 | 
						|
                src_video_shape = src_video[i].shape
 | 
						|
                if src_video_shape[1] != total_frames:
 | 
						|
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						|
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						|
                image_sizes.append(src_video[i].shape[2:])
 | 
						|
            for k, keep in enumerate(keep_frames):
 | 
						|
                if not keep:
 | 
						|
                    src_video[i][:, k:k+1] = 0
 | 
						|
                    src_mask[i][:, k:k+1] = 1
 | 
						|
 | 
						|
        for i, ref_images in enumerate(src_ref_images):
 | 
						|
            if ref_images is not None:
 | 
						|
                image_size = image_sizes[i]
 | 
						|
                for j, ref_img in enumerate(ref_images):
 | 
						|
                    if ref_img is not None:
 | 
						|
                        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
 | 
						|
                        if ref_img.shape[-2:] != image_size:
 | 
						|
                            canvas_height, canvas_width = image_size
 | 
						|
                            ref_height, ref_width = ref_img.shape[-2:]
 | 
						|
                            white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
 | 
						|
                            scale = min(canvas_height / ref_height, canvas_width / ref_width)
 | 
						|
                            new_height = int(ref_height * scale)
 | 
						|
                            new_width = int(ref_width * scale)
 | 
						|
                            resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
 | 
						|
                            top = (canvas_height - new_height) // 2
 | 
						|
                            left = (canvas_width - new_width) // 2
 | 
						|
                            white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
 | 
						|
                            ref_img = white_canvas
 | 
						|
                        src_ref_images[i][j] = ref_img.to(device)
 | 
						|
        return src_video, src_mask, src_ref_images
 | 
						|
 | 
						|
    def decode_latent(self, zs, ref_images=None, tile_size= 0 ):
 | 
						|
        if ref_images is None:
 | 
						|
            ref_images = [None] * len(zs)
 | 
						|
        else:
 | 
						|
            assert len(zs) == len(ref_images)
 | 
						|
 | 
						|
        trimed_zs = []
 | 
						|
        for z, refs in zip(zs, ref_images):
 | 
						|
            if refs is not None:
 | 
						|
                z = z[:, len(refs):, :, :]
 | 
						|
            trimed_zs.append(z)
 | 
						|
 | 
						|
        return self.vae.decode(trimed_zs, tile_size= tile_size)
 | 
						|
 | 
						|
    def get_vae_latents(self, ref_images, device, tile_size= 0):
 | 
						|
        ref_vae_latents = []
 | 
						|
        for ref_image in ref_images:
 | 
						|
            ref_image = TF.to_tensor(ref_image).sub_(0.5).div_(0.5).to(self.device)
 | 
						|
            img_vae_latent = self.vae.encode([ref_image.unsqueeze(1)], tile_size= tile_size)
 | 
						|
            ref_vae_latents.append(img_vae_latent[0])
 | 
						|
                    
 | 
						|
        return torch.cat(ref_vae_latents, dim=1)
 | 
						|
        
 | 
						|
    def generate(self,
 | 
						|
                input_prompt,
 | 
						|
                input_frames= None,
 | 
						|
                input_masks = None,
 | 
						|
                input_ref_images = None,      
 | 
						|
                input_video=None,
 | 
						|
                target_camera=None,                  
 | 
						|
                context_scale=1.0,
 | 
						|
                width = 1280,
 | 
						|
                height = 720,
 | 
						|
                fit_into_canvas = True,
 | 
						|
                frame_num=81,
 | 
						|
                shift=5.0,
 | 
						|
                sample_solver='unipc',
 | 
						|
                sampling_steps=50,
 | 
						|
                guide_scale=5.0,
 | 
						|
                n_prompt="",
 | 
						|
                seed=-1,
 | 
						|
                offload_model=True,
 | 
						|
                callback = None,
 | 
						|
                enable_RIFLEx = None,
 | 
						|
                VAE_tile_size = 0,
 | 
						|
                joint_pass = False,
 | 
						|
                slg_layers = None,
 | 
						|
                slg_start = 0.0,
 | 
						|
                slg_end = 1.0,
 | 
						|
                cfg_star_switch = True,
 | 
						|
                cfg_zero_step = 5,
 | 
						|
                overlapped_latents  = None,
 | 
						|
                return_latent_slice = None,
 | 
						|
                overlap_noise = 0,
 | 
						|
                model_filename = None,
 | 
						|
                **bbargs
 | 
						|
                ):
 | 
						|
        r"""
 | 
						|
        Generates video frames from text prompt using diffusion process.
 | 
						|
 | 
						|
        Args:
 | 
						|
            input_prompt (`str`):
 | 
						|
                Text prompt for content generation
 | 
						|
            size (tupele[`int`], *optional*, defaults to (1280,720)):
 | 
						|
                Controls video resolution, (width,height).
 | 
						|
            frame_num (`int`, *optional*, defaults to 81):
 | 
						|
                How many frames to sample from a video. The number should be 4n+1
 | 
						|
            shift (`float`, *optional*, defaults to 5.0):
 | 
						|
                Noise schedule shift parameter. Affects temporal dynamics
 | 
						|
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
						|
                Solver used to sample the video.
 | 
						|
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
						|
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
						|
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
						|
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
						|
            n_prompt (`str`, *optional*, defaults to ""):
 | 
						|
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
						|
            seed (`int`, *optional*, defaults to -1):
 | 
						|
                Random seed for noise generation. If -1, use random seed.
 | 
						|
            offload_model (`bool`, *optional*, defaults to True):
 | 
						|
                If True, offloads models to CPU during generation to save VRAM
 | 
						|
 | 
						|
        Returns:
 | 
						|
            torch.Tensor:
 | 
						|
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
						|
                - C: Color channels (3 for RGB)
 | 
						|
                - N: Number of frames (81)
 | 
						|
                - H: Frame height (from size)
 | 
						|
                - W: Frame width from size)
 | 
						|
        """
 | 
						|
        # preprocess
 | 
						|
        vace = "Vace" in model_filename
 | 
						|
 | 
						|
        if n_prompt == "":
 | 
						|
            n_prompt = self.sample_neg_prompt
 | 
						|
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
						|
        seed_g = torch.Generator(device=self.device)
 | 
						|
        seed_g.manual_seed(seed)
 | 
						|
 | 
						|
        if self._interrupt:
 | 
						|
            return None
 | 
						|
        context = self.text_encoder([input_prompt], self.device)[0]
 | 
						|
        context_null = self.text_encoder([n_prompt], self.device)[0]
 | 
						|
        context = context.to(self.dtype)
 | 
						|
        context_null = context_null.to(self.dtype)
 | 
						|
        input_ref_images_neg = None
 | 
						|
        phantom = False
 | 
						|
 | 
						|
        if target_camera != None:
 | 
						|
            width = input_video.shape[2]
 | 
						|
            height = input_video.shape[1]
 | 
						|
            input_video = input_video.to(dtype=self.dtype , device=self.device)
 | 
						|
            input_video = input_video.permute(3, 0, 1, 2).div_(127.5).sub_(1.)            
 | 
						|
            source_latents = self.vae.encode([input_video])[0] #.to(dtype=self.dtype, device=self.device)
 | 
						|
            del input_video
 | 
						|
            # Process target camera (recammaster)
 | 
						|
            from wan.utils.cammmaster_tools import get_camera_embedding
 | 
						|
            cam_emb = get_camera_embedding(target_camera)       
 | 
						|
            cam_emb = cam_emb.to(dtype=self.dtype, device=self.device)
 | 
						|
 | 
						|
        if vace :
 | 
						|
            # vace context encode
 | 
						|
            input_frames = [u.to(self.device) for u in input_frames]
 | 
						|
            input_ref_images = [ None if u == None else [v.to(self.device) for v in u]  for u in input_ref_images]
 | 
						|
            input_masks = [u.to(self.device) for u in input_masks]
 | 
						|
            previous_latents = None
 | 
						|
            # if overlapped_latents != None:
 | 
						|
                # input_ref_images = [u[-1:] for u in input_ref_images]
 | 
						|
            z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size, overlapped_latents = overlapped_latents )
 | 
						|
            m0 = self.vace_encode_masks(input_masks, input_ref_images)
 | 
						|
            z = self.vace_latent(z0, m0)
 | 
						|
 | 
						|
            target_shape = list(z0[0].shape)
 | 
						|
            target_shape[0] = int(target_shape[0] / 2)
 | 
						|
        else:
 | 
						|
            if input_ref_images != None: # Phantom Ref images
 | 
						|
                phantom = True
 | 
						|
                input_ref_images = self.get_vae_latents(input_ref_images, self.device)
 | 
						|
                input_ref_images_neg = torch.zeros_like(input_ref_images)
 | 
						|
            F = frame_num
 | 
						|
            target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1 + (input_ref_images.shape[1] if input_ref_images != None else 0),
 | 
						|
                            height // self.vae_stride[1],
 | 
						|
                            width // self.vae_stride[2])
 | 
						|
 | 
						|
        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
						|
                            (self.patch_size[1] * self.patch_size[2]) *
 | 
						|
                            target_shape[1]) 
 | 
						|
 | 
						|
        if self._interrupt:
 | 
						|
            return None
 | 
						|
 | 
						|
        noise = [ torch.randn( *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) ]
 | 
						|
 | 
						|
        # evaluation mode
 | 
						|
 | 
						|
        if False:
 | 
						|
            sample_scheduler = FlowMatchScheduler(num_inference_steps=sampling_steps, shift=shift, sigma_min=0, extra_one_step=True)
 | 
						|
            timesteps = torch.tensor([1000, 934, 862, 756, 603, 410, 250, 140, 74, 0])[:sampling_steps].to(self.device)
 | 
						|
            sample_scheduler.timesteps =timesteps
 | 
						|
        elif sample_solver == 'unipc':
 | 
						|
            sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=self.num_train_timesteps, shift=1, use_dynamic_shifting=False)
 | 
						|
            sample_scheduler.set_timesteps( sampling_steps, device=self.device, shift=shift)
 | 
						|
            
 | 
						|
            timesteps = sample_scheduler.timesteps
 | 
						|
        elif sample_solver == 'dpm++':
 | 
						|
            sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
						|
                num_train_timesteps=self.num_train_timesteps,
 | 
						|
                shift=1,
 | 
						|
                use_dynamic_shifting=False)
 | 
						|
            sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
						|
            timesteps, _ = retrieve_timesteps(
 | 
						|
                sample_scheduler,
 | 
						|
                device=self.device,
 | 
						|
                sigmas=sampling_sigmas)
 | 
						|
        else:
 | 
						|
            raise NotImplementedError("Unsupported solver.")
 | 
						|
 | 
						|
        # sample videos
 | 
						|
        latents = noise[0]
 | 
						|
        del noise
 | 
						|
        batch_size = 1
 | 
						|
        if target_camera != None:
 | 
						|
            shape = list(latents.shape[1:])
 | 
						|
            shape[0] *= 2
 | 
						|
            freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False) 
 | 
						|
        else:
 | 
						|
            freqs = get_rotary_pos_embed(latents.shape[1:], enable_RIFLEx= enable_RIFLEx) 
 | 
						|
 | 
						|
        kwargs = {'freqs': freqs, 'pipeline': self, 'callback': callback}
 | 
						|
 | 
						|
        if target_camera != None:
 | 
						|
            kwargs.update({'cam_emb': cam_emb})
 | 
						|
 | 
						|
        if vace:
 | 
						|
            ref_images_count = len(input_ref_images[0]) if input_ref_images != None and input_ref_images[0] != None else 0 
 | 
						|
            kwargs.update({'vace_context' : z, 'vace_context_scale' : context_scale})
 | 
						|
            if overlapped_latents != None:
 | 
						|
                overlapped_latents_size = overlapped_latents.shape[1] + 1
 | 
						|
                z_reactive = [  zz[0:16, 0:overlapped_latents_size + ref_images_count].clone() for zz in z]
 | 
						|
 | 
						|
 | 
						|
        if self.model.enable_teacache:
 | 
						|
            x_count = 3 if phantom else 2
 | 
						|
            self.model.previous_residual = [None] * x_count 
 | 
						|
            self.model.compute_teacache_threshold(self.model.teacache_start_step, timesteps, self.model.teacache_multiplier)
 | 
						|
        if callback != None:
 | 
						|
            callback(-1, None, True)
 | 
						|
        for i, t in enumerate(tqdm(timesteps)):
 | 
						|
            if overlapped_latents != None:
 | 
						|
                # overlap_noise_factor = overlap_noise *(i/(len(timesteps)-1)) / 1000
 | 
						|
                overlap_noise_factor = overlap_noise / 1000 
 | 
						|
                latent_noise_factor = t / 1000
 | 
						|
                for zz, zz_r, ll in zip(z, z_reactive, [latents]):
 | 
						|
                    pass
 | 
						|
                    zz[0:16, ref_images_count:overlapped_latents_size + ref_images_count]   = zz_r[:, ref_images_count:]  * (1.0 - overlap_noise_factor) + torch.randn_like(zz_r[:, ref_images_count:] ) * overlap_noise_factor 
 | 
						|
                    ll[:, 0:overlapped_latents_size + ref_images_count]   = zz_r  * (1.0 - latent_noise_factor) + torch.randn_like(zz_r ) * latent_noise_factor 
 | 
						|
            if target_camera != None:
 | 
						|
                latent_model_input = torch.cat([latents, source_latents], dim=1)
 | 
						|
            else:
 | 
						|
                latent_model_input = latents
 | 
						|
            kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None
 | 
						|
 | 
						|
            timestep = [t]
 | 
						|
            offload.set_step_no_for_lora(self.model, i)
 | 
						|
            timestep = torch.stack(timestep)
 | 
						|
            kwargs["current_step"] = i 
 | 
						|
            kwargs["t"] = timestep 
 | 
						|
            if guide_scale == 1:
 | 
						|
                noise_pred = self.model( [latent_model_input], x_id = 0, context = [context], **kwargs)[0]
 | 
						|
                if self._interrupt:
 | 
						|
                    return None
 | 
						|
            elif joint_pass:
 | 
						|
                if phantom:
 | 
						|
                    pos_it, pos_i, neg = self.model(
 | 
						|
                         [ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ] * 2 +
 | 
						|
                         [ torch.cat([latent_model_input[:,:-input_ref_images_neg.shape[1]], input_ref_images_neg], dim=1)],
 | 
						|
                        context = [context, context_null, context_null], **kwargs)
 | 
						|
                else:
 | 
						|
                    noise_pred_cond, noise_pred_uncond = self.model(
 | 
						|
                        [latent_model_input, latent_model_input], context = [context, context_null], **kwargs)
 | 
						|
                if self._interrupt:
 | 
						|
                    return None
 | 
						|
            else:
 | 
						|
                if phantom:
 | 
						|
                    pos_it = self.model(
 | 
						|
                        [ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ], x_id = 0, context = [context], **kwargs
 | 
						|
                        )[0]
 | 
						|
                    if self._interrupt:
 | 
						|
                        return None               
 | 
						|
                    pos_i = self.model(
 | 
						|
                        [ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ], x_id = 1, context = [context_null],**kwargs
 | 
						|
                        )[0]
 | 
						|
                    if self._interrupt:
 | 
						|
                        return None               
 | 
						|
                    neg = self.model(
 | 
						|
                           [ torch.cat([latent_model_input[:,:-input_ref_images_neg.shape[1]], input_ref_images_neg], dim=1) ], x_id = 2, context = [context_null], **kwargs
 | 
						|
                        )[0]
 | 
						|
                    if self._interrupt:
 | 
						|
                        return None               
 | 
						|
                else:
 | 
						|
                    noise_pred_cond = self.model(
 | 
						|
                        [latent_model_input], x_id = 0, context = [context], **kwargs)[0]
 | 
						|
                    if self._interrupt:
 | 
						|
                        return None               
 | 
						|
                    noise_pred_uncond = self.model(
 | 
						|
                        [latent_model_input], x_id = 1, context = [context_null], **kwargs)[0]
 | 
						|
                    if self._interrupt:
 | 
						|
                        return None
 | 
						|
 | 
						|
            # del latent_model_input
 | 
						|
 | 
						|
            # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/
 | 
						|
            if guide_scale == 1:
 | 
						|
                pass
 | 
						|
            elif phantom:
 | 
						|
                guide_scale_img= 5.0
 | 
						|
                guide_scale_text= guide_scale #7.5                
 | 
						|
                noise_pred = neg + guide_scale_img * (pos_i - neg) + guide_scale_text * (pos_it - pos_i)
 | 
						|
            else:
 | 
						|
                noise_pred_text = noise_pred_cond
 | 
						|
                if cfg_star_switch:
 | 
						|
                    positive_flat = noise_pred_text.view(batch_size, -1)  
 | 
						|
                    negative_flat = noise_pred_uncond.view(batch_size, -1)  
 | 
						|
 | 
						|
                    alpha = optimized_scale(positive_flat,negative_flat)
 | 
						|
                    alpha = alpha.view(batch_size, 1, 1, 1)
 | 
						|
 | 
						|
                    if (i <= cfg_zero_step):
 | 
						|
                        noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred...
 | 
						|
                    else:
 | 
						|
                        noise_pred_uncond *= alpha
 | 
						|
                noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond)            
 | 
						|
            noise_pred_uncond, noise_pred_cond, noise_pred_text, pos_it, pos_i, neg  = None, None, None, None, None, None
 | 
						|
            scheduler_kwargs = {} if isinstance(sample_scheduler, FlowMatchScheduler) else {"generator": seed_g}
 | 
						|
            temp_x0 = sample_scheduler.step(
 | 
						|
                noise_pred[:, :target_shape[1]].unsqueeze(0),
 | 
						|
                t,
 | 
						|
                latents.unsqueeze(0),
 | 
						|
                # return_dict=False,
 | 
						|
                **scheduler_kwargs)[0]
 | 
						|
            latents = temp_x0.squeeze(0)
 | 
						|
            del temp_x0
 | 
						|
 | 
						|
            if callback is not None:
 | 
						|
                callback(i, latents, False)         
 | 
						|
 | 
						|
        x0 = [latents]
 | 
						|
 | 
						|
        if return_latent_slice != None:
 | 
						|
            if overlapped_latents != None:
 | 
						|
                # latents [:, 1:] = self.toto
 | 
						|
                for zz, zz_r, ll  in zip(z, z_reactive, [latents]):
 | 
						|
                    ll[:, 0:overlapped_latents_size + ref_images_count]   = zz_r 
 | 
						|
 | 
						|
            latent_slice = latents[:, return_latent_slice].clone()
 | 
						|
        if input_frames == None:
 | 
						|
            if phantom:
 | 
						|
                # phantom post processing
 | 
						|
                x0 = [x0_[:,:-input_ref_images.shape[1]] for x0_ in x0]
 | 
						|
            videos = self.vae.decode(x0, VAE_tile_size)
 | 
						|
        else:
 | 
						|
            # vace post processing
 | 
						|
            videos = self.decode_latent(x0, input_ref_images, VAE_tile_size)
 | 
						|
        if return_latent_slice != None:
 | 
						|
            return { "x" : videos[0], "latent_slice" : latent_slice }
 | 
						|
        return videos[0]
 | 
						|
 | 
						|
    def adapt_vace_model(self):
 | 
						|
        model = self.model
 | 
						|
        modules_dict= { k: m for k, m in model.named_modules()}
 | 
						|
        for model_layer, vace_layer in model.vace_layers_mapping.items():
 | 
						|
            module = modules_dict[f"vace_blocks.{vace_layer}"]
 | 
						|
            target = modules_dict[f"blocks.{model_layer}"]
 | 
						|
            setattr(target, "vace", module )
 | 
						|
        delattr(model, "vace_blocks")
 | 
						|
 | 
						|
  |