mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 22:26:36 +00:00
156 lines
6.6 KiB
Python
156 lines
6.6 KiB
Python
from .istftnet import Decoder
|
|
from .modules import CustomAlbert, ProsodyPredictor, TextEncoder
|
|
from dataclasses import dataclass
|
|
from huggingface_hub import hf_hub_download
|
|
from loguru import logger
|
|
from transformers import AlbertConfig
|
|
from typing import Dict, Optional, Union
|
|
import json
|
|
import torch
|
|
import os
|
|
|
|
class KModel(torch.nn.Module):
|
|
'''
|
|
KModel is a torch.nn.Module with 2 main responsibilities:
|
|
1. Init weights, downloading config.json + model.pth from HF if needed
|
|
2. forward(phonemes: str, ref_s: FloatTensor) -> (audio: FloatTensor)
|
|
|
|
You likely only need one KModel instance, and it can be reused across
|
|
multiple KPipelines to avoid redundant memory allocation.
|
|
|
|
Unlike KPipeline, KModel is language-blind.
|
|
|
|
KModel stores self.vocab and thus knows how to map phonemes -> input_ids,
|
|
so there is no need to repeatedly download config.json outside of KModel.
|
|
'''
|
|
|
|
MODEL_NAMES = {
|
|
'hexgrad/Kokoro-82M': 'kokoro-v1_0.pth',
|
|
'hexgrad/Kokoro-82M-v1.1-zh': 'kokoro-v1_1-zh.pth',
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
repo_id: Optional[str] = None,
|
|
config: Union[Dict, str, None] = None,
|
|
model: Optional[str] = None,
|
|
disable_complex: bool = False
|
|
):
|
|
super().__init__()
|
|
if repo_id is None:
|
|
repo_id = 'hexgrad/Kokoro-82M'
|
|
print(f"WARNING: Defaulting repo_id to {repo_id}. Pass repo_id='{repo_id}' to suppress this warning.")
|
|
self.repo_id = repo_id
|
|
if not isinstance(config, dict):
|
|
if not config:
|
|
logger.debug("No config provided, downloading from HF")
|
|
config = hf_hub_download(repo_id=repo_id, filename='config.json')
|
|
with open(config, 'r', encoding='utf-8') as r:
|
|
config = json.load(r)
|
|
logger.debug(f"Loaded config: {config}")
|
|
self.vocab = config['vocab']
|
|
self.bert = CustomAlbert(AlbertConfig(vocab_size=config['n_token'], **config['plbert']))
|
|
self.bert_encoder = torch.nn.Linear(self.bert.config.hidden_size, config['hidden_dim'])
|
|
self.context_length = self.bert.config.max_position_embeddings
|
|
self.predictor = ProsodyPredictor(
|
|
style_dim=config['style_dim'], d_hid=config['hidden_dim'],
|
|
nlayers=config['n_layer'], max_dur=config['max_dur'], dropout=config['dropout']
|
|
)
|
|
self.text_encoder = TextEncoder(
|
|
channels=config['hidden_dim'], kernel_size=config['text_encoder_kernel_size'],
|
|
depth=config['n_layer'], n_symbols=config['n_token']
|
|
)
|
|
self.decoder = Decoder(
|
|
dim_in=config['hidden_dim'], style_dim=config['style_dim'],
|
|
dim_out=config['n_mels'], disable_complex=disable_complex, **config['istftnet']
|
|
)
|
|
if not model:
|
|
try:
|
|
model = hf_hub_download(repo_id=repo_id, filename=KModel.MODEL_NAMES[repo_id])
|
|
except:
|
|
model = os.path.join(repo_id, 'kokoro-v1_0.pth')
|
|
for key, state_dict in torch.load(model, map_location='cpu', weights_only=True).items():
|
|
assert hasattr(self, key), key
|
|
try:
|
|
getattr(self, key).load_state_dict(state_dict)
|
|
except:
|
|
logger.debug(f"Did not load {key} from state_dict")
|
|
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
|
getattr(self, key).load_state_dict(state_dict, strict=False)
|
|
|
|
@property
|
|
def device(self):
|
|
return self.bert.device
|
|
|
|
@dataclass
|
|
class Output:
|
|
audio: torch.FloatTensor
|
|
pred_dur: Optional[torch.LongTensor] = None
|
|
|
|
@torch.no_grad()
|
|
def forward_with_tokens(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
ref_s: torch.FloatTensor,
|
|
speed: float = 1
|
|
) -> tuple[torch.FloatTensor, torch.LongTensor]:
|
|
input_lengths = torch.full(
|
|
(input_ids.shape[0],),
|
|
input_ids.shape[-1],
|
|
device=input_ids.device,
|
|
dtype=torch.long
|
|
)
|
|
|
|
text_mask = torch.arange(input_lengths.max()).unsqueeze(0).expand(input_lengths.shape[0], -1).type_as(input_lengths)
|
|
text_mask = torch.gt(text_mask+1, input_lengths.unsqueeze(1)).to(self.device)
|
|
bert_dur = self.bert(input_ids, attention_mask=(~text_mask).int())
|
|
d_en = self.bert_encoder(bert_dur).transpose(-1, -2)
|
|
s = ref_s[:, 128:]
|
|
d = self.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
|
x, _ = self.predictor.lstm(d)
|
|
duration = self.predictor.duration_proj(x)
|
|
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
|
pred_dur = torch.round(duration).clamp(min=1).long().squeeze()
|
|
indices = torch.repeat_interleave(torch.arange(input_ids.shape[1], device=self.device), pred_dur)
|
|
pred_aln_trg = torch.zeros((input_ids.shape[1], indices.shape[0]), device=self.device)
|
|
pred_aln_trg[indices, torch.arange(indices.shape[0])] = 1
|
|
pred_aln_trg = pred_aln_trg.unsqueeze(0).to(self.device)
|
|
en = d.transpose(-1, -2) @ pred_aln_trg
|
|
F0_pred, N_pred = self.predictor.F0Ntrain(en, s)
|
|
t_en = self.text_encoder(input_ids, input_lengths, text_mask)
|
|
asr = t_en @ pred_aln_trg
|
|
audio = self.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze()
|
|
return audio, pred_dur
|
|
|
|
def forward(
|
|
self,
|
|
phonemes: str,
|
|
ref_s: torch.FloatTensor,
|
|
speed: float = 1,
|
|
return_output: bool = False
|
|
) -> Union['KModel.Output', torch.FloatTensor]:
|
|
input_ids = list(filter(lambda i: i is not None, map(lambda p: self.vocab.get(p), phonemes)))
|
|
logger.debug(f"phonemes: {phonemes} -> input_ids: {input_ids}")
|
|
assert len(input_ids)+2 <= self.context_length, (len(input_ids)+2, self.context_length)
|
|
input_ids = torch.LongTensor([[0, *input_ids, 0]]).to(self.device)
|
|
ref_s = ref_s.to(self.device)
|
|
audio, pred_dur = self.forward_with_tokens(input_ids, ref_s, speed)
|
|
audio = audio.squeeze().cpu()
|
|
pred_dur = pred_dur.cpu() if pred_dur is not None else None
|
|
logger.debug(f"pred_dur: {pred_dur}")
|
|
return self.Output(audio=audio, pred_dur=pred_dur) if return_output else audio
|
|
|
|
class KModelForONNX(torch.nn.Module):
|
|
def __init__(self, kmodel: KModel):
|
|
super().__init__()
|
|
self.kmodel = kmodel
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
ref_s: torch.FloatTensor,
|
|
speed: float = 1
|
|
) -> tuple[torch.FloatTensor, torch.LongTensor]:
|
|
waveform, duration = self.kmodel.forward_with_tokens(input_ids, ref_s, speed)
|
|
return waveform, duration
|