mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			362 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			362 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copied from https://github.com/kq-chen/qwen-vl-utils
 | 
						|
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import base64
 | 
						|
import logging
 | 
						|
import math
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import time
 | 
						|
import warnings
 | 
						|
from io import BytesIO
 | 
						|
 | 
						|
import requests
 | 
						|
import torch
 | 
						|
import torchvision
 | 
						|
from packaging import version
 | 
						|
from PIL import Image
 | 
						|
from torchvision import io, transforms
 | 
						|
from torchvision.transforms import InterpolationMode
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
IMAGE_FACTOR = 28
 | 
						|
MIN_PIXELS = 4 * 28 * 28
 | 
						|
MAX_PIXELS = 16384 * 28 * 28
 | 
						|
MAX_RATIO = 200
 | 
						|
 | 
						|
VIDEO_MIN_PIXELS = 128 * 28 * 28
 | 
						|
VIDEO_MAX_PIXELS = 768 * 28 * 28
 | 
						|
VIDEO_TOTAL_PIXELS = 24576 * 28 * 28
 | 
						|
FRAME_FACTOR = 2
 | 
						|
FPS = 2.0
 | 
						|
FPS_MIN_FRAMES = 4
 | 
						|
FPS_MAX_FRAMES = 768
 | 
						|
 | 
						|
 | 
						|
def round_by_factor(number: int, factor: int) -> int:
 | 
						|
    """Returns the closest integer to 'number' that is divisible by 'factor'."""
 | 
						|
    return round(number / factor) * factor
 | 
						|
 | 
						|
 | 
						|
def ceil_by_factor(number: int, factor: int) -> int:
 | 
						|
    """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
 | 
						|
    return math.ceil(number / factor) * factor
 | 
						|
 | 
						|
 | 
						|
def floor_by_factor(number: int, factor: int) -> int:
 | 
						|
    """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
 | 
						|
    return math.floor(number / factor) * factor
 | 
						|
 | 
						|
 | 
						|
def smart_resize(height: int,
 | 
						|
                 width: int,
 | 
						|
                 factor: int = IMAGE_FACTOR,
 | 
						|
                 min_pixels: int = MIN_PIXELS,
 | 
						|
                 max_pixels: int = MAX_PIXELS) -> tuple[int, int]:
 | 
						|
    """
 | 
						|
    Rescales the image so that the following conditions are met:
 | 
						|
 | 
						|
    1. Both dimensions (height and width) are divisible by 'factor'.
 | 
						|
 | 
						|
    2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
 | 
						|
 | 
						|
    3. The aspect ratio of the image is maintained as closely as possible.
 | 
						|
    """
 | 
						|
    if max(height, width) / min(height, width) > MAX_RATIO:
 | 
						|
        raise ValueError(
 | 
						|
            f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
 | 
						|
        )
 | 
						|
    h_bar = max(factor, round_by_factor(height, factor))
 | 
						|
    w_bar = max(factor, round_by_factor(width, factor))
 | 
						|
    if h_bar * w_bar > max_pixels:
 | 
						|
        beta = math.sqrt((height * width) / max_pixels)
 | 
						|
        h_bar = floor_by_factor(height / beta, factor)
 | 
						|
        w_bar = floor_by_factor(width / beta, factor)
 | 
						|
    elif h_bar * w_bar < min_pixels:
 | 
						|
        beta = math.sqrt(min_pixels / (height * width))
 | 
						|
        h_bar = ceil_by_factor(height * beta, factor)
 | 
						|
        w_bar = ceil_by_factor(width * beta, factor)
 | 
						|
    return h_bar, w_bar
 | 
						|
 | 
						|
 | 
						|
def fetch_image(ele: dict[str, str | Image.Image],
 | 
						|
                size_factor: int = IMAGE_FACTOR) -> Image.Image:
 | 
						|
    if "image" in ele:
 | 
						|
        image = ele["image"]
 | 
						|
    else:
 | 
						|
        image = ele["image_url"]
 | 
						|
    image_obj = None
 | 
						|
    if isinstance(image, Image.Image):
 | 
						|
        image_obj = image
 | 
						|
    elif image.startswith("http://") or image.startswith("https://"):
 | 
						|
        image_obj = Image.open(requests.get(image, stream=True).raw)
 | 
						|
    elif image.startswith("file://"):
 | 
						|
        image_obj = Image.open(image[7:])
 | 
						|
    elif image.startswith("data:image"):
 | 
						|
        if "base64," in image:
 | 
						|
            _, base64_data = image.split("base64,", 1)
 | 
						|
            data = base64.b64decode(base64_data)
 | 
						|
            image_obj = Image.open(BytesIO(data))
 | 
						|
    else:
 | 
						|
        image_obj = Image.open(image)
 | 
						|
    if image_obj is None:
 | 
						|
        raise ValueError(
 | 
						|
            f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}"
 | 
						|
        )
 | 
						|
    image = image_obj.convert("RGB")
 | 
						|
    ## resize
 | 
						|
    if "resized_height" in ele and "resized_width" in ele:
 | 
						|
        resized_height, resized_width = smart_resize(
 | 
						|
            ele["resized_height"],
 | 
						|
            ele["resized_width"],
 | 
						|
            factor=size_factor,
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        width, height = image.size
 | 
						|
        min_pixels = ele.get("min_pixels", MIN_PIXELS)
 | 
						|
        max_pixels = ele.get("max_pixels", MAX_PIXELS)
 | 
						|
        resized_height, resized_width = smart_resize(
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            factor=size_factor,
 | 
						|
            min_pixels=min_pixels,
 | 
						|
            max_pixels=max_pixels,
 | 
						|
        )
 | 
						|
    image = image.resize((resized_width, resized_height))
 | 
						|
 | 
						|
    return image
 | 
						|
 | 
						|
 | 
						|
def smart_nframes(
 | 
						|
    ele: dict,
 | 
						|
    total_frames: int,
 | 
						|
    video_fps: int | float,
 | 
						|
) -> int:
 | 
						|
    """calculate the number of frames for video used for model inputs.
 | 
						|
 | 
						|
    Args:
 | 
						|
        ele (dict): a dict contains the configuration of video.
 | 
						|
            support either `fps` or `nframes`:
 | 
						|
                - nframes: the number of frames to extract for model inputs.
 | 
						|
                - fps: the fps to extract frames for model inputs.
 | 
						|
                    - min_frames: the minimum number of frames of the video, only used when fps is provided.
 | 
						|
                    - max_frames: the maximum number of frames of the video, only used when fps is provided.
 | 
						|
        total_frames (int): the original total number of frames of the video.
 | 
						|
        video_fps (int | float): the original fps of the video.
 | 
						|
 | 
						|
    Raises:
 | 
						|
        ValueError: nframes should in interval [FRAME_FACTOR, total_frames].
 | 
						|
 | 
						|
    Returns:
 | 
						|
        int: the number of frames for video used for model inputs.
 | 
						|
    """
 | 
						|
    assert not ("fps" in ele and
 | 
						|
                "nframes" in ele), "Only accept either `fps` or `nframes`"
 | 
						|
    if "nframes" in ele:
 | 
						|
        nframes = round_by_factor(ele["nframes"], FRAME_FACTOR)
 | 
						|
    else:
 | 
						|
        fps = ele.get("fps", FPS)
 | 
						|
        min_frames = ceil_by_factor(
 | 
						|
            ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR)
 | 
						|
        max_frames = floor_by_factor(
 | 
						|
            ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)),
 | 
						|
            FRAME_FACTOR)
 | 
						|
        nframes = total_frames / video_fps * fps
 | 
						|
        nframes = min(max(nframes, min_frames), max_frames)
 | 
						|
        nframes = round_by_factor(nframes, FRAME_FACTOR)
 | 
						|
    if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
 | 
						|
        raise ValueError(
 | 
						|
            f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}."
 | 
						|
        )
 | 
						|
    return nframes
 | 
						|
 | 
						|
 | 
						|
def _read_video_torchvision(ele: dict,) -> torch.Tensor:
 | 
						|
    """read video using torchvision.io.read_video
 | 
						|
 | 
						|
    Args:
 | 
						|
        ele (dict): a dict contains the configuration of video.
 | 
						|
        support keys:
 | 
						|
            - video: the path of video. support "file://", "http://", "https://" and local path.
 | 
						|
            - video_start: the start time of video.
 | 
						|
            - video_end: the end time of video.
 | 
						|
    Returns:
 | 
						|
        torch.Tensor: the video tensor with shape (T, C, H, W).
 | 
						|
    """
 | 
						|
    video_path = ele["video"]
 | 
						|
    if version.parse(torchvision.__version__) < version.parse("0.19.0"):
 | 
						|
        if "http://" in video_path or "https://" in video_path:
 | 
						|
            warnings.warn(
 | 
						|
                "torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0."
 | 
						|
            )
 | 
						|
        if "file://" in video_path:
 | 
						|
            video_path = video_path[7:]
 | 
						|
    st = time.time()
 | 
						|
    video, audio, info = io.read_video(
 | 
						|
        video_path,
 | 
						|
        start_pts=ele.get("video_start", 0.0),
 | 
						|
        end_pts=ele.get("video_end", None),
 | 
						|
        pts_unit="sec",
 | 
						|
        output_format="TCHW",
 | 
						|
    )
 | 
						|
    total_frames, video_fps = video.size(0), info["video_fps"]
 | 
						|
    logger.info(
 | 
						|
        f"torchvision:  {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s"
 | 
						|
    )
 | 
						|
    nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
 | 
						|
    idx = torch.linspace(0, total_frames - 1, nframes).round().long()
 | 
						|
    video = video[idx]
 | 
						|
    return video
 | 
						|
 | 
						|
 | 
						|
def is_decord_available() -> bool:
 | 
						|
    import importlib.util
 | 
						|
 | 
						|
    return importlib.util.find_spec("decord") is not None
 | 
						|
 | 
						|
 | 
						|
def _read_video_decord(ele: dict,) -> torch.Tensor:
 | 
						|
    """read video using decord.VideoReader
 | 
						|
 | 
						|
    Args:
 | 
						|
        ele (dict): a dict contains the configuration of video.
 | 
						|
        support keys:
 | 
						|
            - video: the path of video. support "file://", "http://", "https://" and local path.
 | 
						|
            - video_start: the start time of video.
 | 
						|
            - video_end: the end time of video.
 | 
						|
    Returns:
 | 
						|
        torch.Tensor: the video tensor with shape (T, C, H, W).
 | 
						|
    """
 | 
						|
    import decord
 | 
						|
    video_path = ele["video"]
 | 
						|
    st = time.time()
 | 
						|
    vr = decord.VideoReader(video_path)
 | 
						|
    # TODO: support start_pts and end_pts
 | 
						|
    if 'video_start' in ele or 'video_end' in ele:
 | 
						|
        raise NotImplementedError(
 | 
						|
            "not support start_pts and end_pts in decord for now.")
 | 
						|
    total_frames, video_fps = len(vr), vr.get_avg_fps()
 | 
						|
    logger.info(
 | 
						|
        f"decord:  {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s"
 | 
						|
    )
 | 
						|
    nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
 | 
						|
    idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist()
 | 
						|
    video = vr.get_batch(idx).asnumpy()
 | 
						|
    video = torch.tensor(video).permute(0, 3, 1, 2)  # Convert to TCHW format
 | 
						|
    return video
 | 
						|
 | 
						|
 | 
						|
VIDEO_READER_BACKENDS = {
 | 
						|
    "decord": _read_video_decord,
 | 
						|
    "torchvision": _read_video_torchvision,
 | 
						|
}
 | 
						|
 | 
						|
FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None)
 | 
						|
 | 
						|
 | 
						|
def get_video_reader_backend() -> str:
 | 
						|
    if FORCE_QWENVL_VIDEO_READER is not None:
 | 
						|
        video_reader_backend = FORCE_QWENVL_VIDEO_READER
 | 
						|
    elif is_decord_available():
 | 
						|
        video_reader_backend = "decord"
 | 
						|
    else:
 | 
						|
        video_reader_backend = "torchvision"
 | 
						|
    print(
 | 
						|
        f"qwen-vl-utils using {video_reader_backend} to read video.",
 | 
						|
        file=sys.stderr)
 | 
						|
    return video_reader_backend
 | 
						|
 | 
						|
 | 
						|
def fetch_video(
 | 
						|
        ele: dict,
 | 
						|
        image_factor: int = IMAGE_FACTOR) -> torch.Tensor | list[Image.Image]:
 | 
						|
    if isinstance(ele["video"], str):
 | 
						|
        video_reader_backend = get_video_reader_backend()
 | 
						|
        video = VIDEO_READER_BACKENDS[video_reader_backend](ele)
 | 
						|
        nframes, _, height, width = video.shape
 | 
						|
 | 
						|
        min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS)
 | 
						|
        total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS)
 | 
						|
        max_pixels = max(
 | 
						|
            min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR),
 | 
						|
            int(min_pixels * 1.05))
 | 
						|
        max_pixels = ele.get("max_pixels", max_pixels)
 | 
						|
        if "resized_height" in ele and "resized_width" in ele:
 | 
						|
            resized_height, resized_width = smart_resize(
 | 
						|
                ele["resized_height"],
 | 
						|
                ele["resized_width"],
 | 
						|
                factor=image_factor,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            resized_height, resized_width = smart_resize(
 | 
						|
                height,
 | 
						|
                width,
 | 
						|
                factor=image_factor,
 | 
						|
                min_pixels=min_pixels,
 | 
						|
                max_pixels=max_pixels,
 | 
						|
            )
 | 
						|
        video = transforms.functional.resize(
 | 
						|
            video,
 | 
						|
            [resized_height, resized_width],
 | 
						|
            interpolation=InterpolationMode.BICUBIC,
 | 
						|
            antialias=True,
 | 
						|
        ).float()
 | 
						|
        return video
 | 
						|
    else:
 | 
						|
        assert isinstance(ele["video"], (list, tuple))
 | 
						|
        process_info = ele.copy()
 | 
						|
        process_info.pop("type", None)
 | 
						|
        process_info.pop("video", None)
 | 
						|
        images = [
 | 
						|
            fetch_image({
 | 
						|
                "image": video_element,
 | 
						|
                **process_info
 | 
						|
            },
 | 
						|
                        size_factor=image_factor)
 | 
						|
            for video_element in ele["video"]
 | 
						|
        ]
 | 
						|
        nframes = ceil_by_factor(len(images), FRAME_FACTOR)
 | 
						|
        if len(images) < nframes:
 | 
						|
            images.extend([images[-1]] * (nframes - len(images)))
 | 
						|
        return images
 | 
						|
 | 
						|
 | 
						|
def extract_vision_info(
 | 
						|
        conversations: list[dict] | list[list[dict]]) -> list[dict]:
 | 
						|
    vision_infos = []
 | 
						|
    if isinstance(conversations[0], dict):
 | 
						|
        conversations = [conversations]
 | 
						|
    for conversation in conversations:
 | 
						|
        for message in conversation:
 | 
						|
            if isinstance(message["content"], list):
 | 
						|
                for ele in message["content"]:
 | 
						|
                    if ("image" in ele or "image_url" in ele or
 | 
						|
                            "video" in ele or
 | 
						|
                            ele["type"] in ("image", "image_url", "video")):
 | 
						|
                        vision_infos.append(ele)
 | 
						|
    return vision_infos
 | 
						|
 | 
						|
 | 
						|
def process_vision_info(
 | 
						|
    conversations: list[dict] | list[list[dict]],
 | 
						|
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] |
 | 
						|
           None]:
 | 
						|
    vision_infos = extract_vision_info(conversations)
 | 
						|
    ## Read images or videos
 | 
						|
    image_inputs = []
 | 
						|
    video_inputs = []
 | 
						|
    for vision_info in vision_infos:
 | 
						|
        if "image" in vision_info or "image_url" in vision_info:
 | 
						|
            image_inputs.append(fetch_image(vision_info))
 | 
						|
        elif "video" in vision_info:
 | 
						|
            video_inputs.append(fetch_video(vision_info))
 | 
						|
        else:
 | 
						|
            raise ValueError("image, image_url or video should in content.")
 | 
						|
    if len(image_inputs) == 0:
 | 
						|
        image_inputs = None
 | 
						|
    if len(video_inputs) == 0:
 | 
						|
        video_inputs = None
 | 
						|
    return image_inputs, video_inputs
 |