Wan2.1/models/wan/modules/vae2_2.py
2025-08-08 03:59:20 +02:00

1212 lines
38 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import torch
import torch.cuda.amp as amp
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
__all__ = [
"Wan2_2_VAE",
]
CACHE_T = 2
class CausalConv3d(nn.Conv3d):
"""
Causal 3d convolusion.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._padding = (
self.padding[2],
self.padding[2],
self.padding[1],
self.padding[1],
2 * self.padding[0],
0,
)
self.padding = (0, 0, 0)
def forward(self, x, cache_x=None):
padding = list(self._padding)
if cache_x is not None and self._padding[4] > 0:
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
cache_x = None
x = F.pad(x, padding)
try:
out = super().forward(x)
return out
except RuntimeError as e:
if "miopenStatus" in str(e):
print("⚠️ MIOpen fallback: AMD gets upset when trying to work with large areas, and so CPU will be "
"used for this decoding (which is very slow). Consider using tiled VAE Decoding.")
x_cpu = x.float().cpu()
weight_cpu = self.weight.float().cpu()
bias_cpu = self.bias.float().cpu() if self.bias is not None else None
print(f"[Fallback] x shape: {x_cpu.shape}, weight shape: {weight_cpu.shape}")
out = F.conv3d(x_cpu, weight_cpu, bias_cpu,
self.stride, (0, 0, 0), # avoid double padding here
self.dilation, self.groups)
out = out.to(x.device)
if x.dtype in (torch.float16, torch.bfloat16):
out = out.half()
if x.dtype != out.dtype:
out = out.to(x.dtype)
return out
raise
class RMS_norm(nn.Module):
def __init__(self, dim, channel_first=True, images=True, bias=False):
super().__init__()
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
self.channel_first = channel_first
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(shape))
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
def forward(self, x):
return (F.normalize(x, dim=(1 if self.channel_first else -1)) *
self.scale * self.gamma + self.bias)
class Upsample(nn.Upsample):
def forward(self, x):
"""
Fix bfloat16 support for nearest neighbor interpolation.
"""
return super().forward(x.float()).type_as(x)
class Resample(nn.Module):
def __init__(self, dim, mode):
assert mode in (
"none",
"upsample2d",
"upsample3d",
"downsample2d",
"downsample3d",
)
super().__init__()
self.dim = dim
self.mode = mode
# layers
if mode == "upsample2d":
self.resample = nn.Sequential(
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
nn.Conv2d(dim, dim, 3, padding=1),
)
elif mode == "upsample3d":
self.resample = nn.Sequential(
Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
nn.Conv2d(dim, dim, 3, padding=1),
# nn.Conv2d(dim, dim//2, 3, padding=1)
)
self.time_conv = CausalConv3d(
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
elif mode == "downsample2d":
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
elif mode == "downsample3d":
self.resample = nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
nn.Conv2d(dim, dim, 3, stride=(2, 2)))
self.time_conv = CausalConv3d(
dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
else:
self.resample = nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
b, c, t, h, w = x.size()
if self.mode == "upsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = "Rep"
feat_idx[0] += 1
else:
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
feat_cache[idx] != "Rep"):
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and
feat_cache[idx] == "Rep"):
cache_x = torch.cat(
[
torch.zeros_like(cache_x).to(cache_x.device),
cache_x
],
dim=2,
)
if feat_cache[idx] == "Rep":
x = self.time_conv(x)
else:
x = self.time_conv(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
x = x.reshape(b, 2, c, t, h, w)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
3)
x = x.reshape(b, c, t * 2, h, w)
t = x.shape[2]
x = rearrange(x, "b c t h w -> (b t) c h w")
x = self.resample(x)
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
if self.mode == "downsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = x.clone()
feat_idx[0] += 1
else:
cache_x = x[:, :, -1:, :, :].clone()
x = self.time_conv(
torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
feat_cache[idx] = cache_x
feat_idx[0] += 1
return x
def init_weight(self, conv):
conv_weight = conv.weight.detach().clone()
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
one_matrix = torch.eye(c1, c2)
init_matrix = one_matrix
nn.init.zeros_(conv_weight)
conv_weight.data[:, :, 1, 0, 0] = init_matrix # * 0.5
conv.weight = nn.Parameter(conv_weight)
nn.init.zeros_(conv.bias.data)
def init_weight2(self, conv):
conv_weight = conv.weight.data.detach().clone()
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
init_matrix = torch.eye(c1 // 2, c2)
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
conv.weight = nn.Parameter(conv_weight)
nn.init.zeros_(conv.bias.data)
class ResidualBlock(nn.Module):
def __init__(self, in_dim, out_dim, dropout=0.0):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
# layers
self.residual = nn.Sequential(
RMS_norm(in_dim, images=False),
nn.SiLU(),
CausalConv3d(in_dim, out_dim, 3, padding=1),
RMS_norm(out_dim, images=False),
nn.SiLU(),
nn.Dropout(dropout),
CausalConv3d(out_dim, out_dim, 3, padding=1),
)
self.shortcut = (
CausalConv3d(in_dim, out_dim, 1)
if in_dim != out_dim else nn.Identity())
def forward(self, x, feat_cache=None, feat_idx=[0]):
h = self.shortcut(x)
for layer in self.residual:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x + h
class AttentionBlock(nn.Module):
"""
Causal self-attention with a single head.
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
# layers
self.norm = RMS_norm(dim)
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
self.proj = nn.Conv2d(dim, dim, 1)
# zero out the last layer params
nn.init.zeros_(self.proj.weight)
def forward(self, x):
identity = x
b, c, t, h, w = x.size()
x = rearrange(x, "b c t h w -> (b t) c h w")
x = self.norm(x)
# compute query, key, value
q, k, v = (
self.to_qkv(x).reshape(b * t, 1, c * 3,
-1).permute(0, 1, 3,
2).contiguous().chunk(3, dim=-1))
# apply attention
x = F.scaled_dot_product_attention(
q,
k,
v,
)
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
# output
x = self.proj(x)
x = rearrange(x, "(b t) c h w-> b c t h w", t=t)
return x + identity
def patchify(x, patch_size):
if patch_size == 1:
return x
if x.dim() == 4:
x = rearrange(
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size, r=patch_size)
elif x.dim() == 5:
x = rearrange(
x,
"b c f (h q) (w r) -> b (c r q) f h w",
q=patch_size,
r=patch_size,
)
else:
raise ValueError(f"Invalid input shape: {x.shape}")
return x
def unpatchify(x, patch_size):
if patch_size == 1:
return x
if x.dim() == 4:
x = rearrange(
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size, r=patch_size)
elif x.dim() == 5:
x = rearrange(
x,
"b (c r q) f h w -> b c f (h q) (w r)",
q=patch_size,
r=patch_size,
)
return x
class AvgDown3D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
factor_t,
factor_s=1,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.factor_t = factor_t
self.factor_s = factor_s
self.factor = self.factor_t * self.factor_s * self.factor_s
assert in_channels * self.factor % out_channels == 0
self.group_size = in_channels * self.factor // out_channels
def forward(self, x: torch.Tensor) -> torch.Tensor:
pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t
pad = (0, 0, 0, 0, pad_t, 0)
x = F.pad(x, pad)
B, C, T, H, W = x.shape
x = x.view(
B,
C,
T // self.factor_t,
self.factor_t,
H // self.factor_s,
self.factor_s,
W // self.factor_s,
self.factor_s,
)
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
x = x.view(
B,
C * self.factor,
T // self.factor_t,
H // self.factor_s,
W // self.factor_s,
)
x = x.view(
B,
self.out_channels,
self.group_size,
T // self.factor_t,
H // self.factor_s,
W // self.factor_s,
)
x = x.mean(dim=2)
return x
class DupUp3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
factor_t,
factor_s=1,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.factor_t = factor_t
self.factor_s = factor_s
self.factor = self.factor_t * self.factor_s * self.factor_s
assert out_channels * self.factor % in_channels == 0
self.repeats = out_channels * self.factor // in_channels
def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor:
x = x.repeat_interleave(self.repeats, dim=1)
x = x.view(
x.size(0),
self.out_channels,
self.factor_t,
self.factor_s,
self.factor_s,
x.size(2),
x.size(3),
x.size(4),
)
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
x = x.view(
x.size(0),
self.out_channels,
x.size(2) * self.factor_t,
x.size(4) * self.factor_s,
x.size(6) * self.factor_s,
)
if first_chunk:
x = x[:, :, self.factor_t - 1:, :, :]
return x
class Down_ResidualBlock(nn.Module):
def __init__(self,
in_dim,
out_dim,
dropout,
mult,
temperal_downsample=False,
down_flag=False):
super().__init__()
# Shortcut path with downsample
self.avg_shortcut = AvgDown3D(
in_dim,
out_dim,
factor_t=2 if temperal_downsample else 1,
factor_s=2 if down_flag else 1,
)
# Main path with residual blocks and downsample
downsamples = []
for _ in range(mult):
downsamples.append(ResidualBlock(in_dim, out_dim, dropout))
in_dim = out_dim
# Add the final downsample block
if down_flag:
mode = "downsample3d" if temperal_downsample else "downsample2d"
downsamples.append(Resample(out_dim, mode=mode))
self.downsamples = nn.Sequential(*downsamples)
def forward(self, x, feat_cache=None, feat_idx=[0]):
x_copy = x.clone()
for module in self.downsamples:
x = module(x, feat_cache, feat_idx)
return x + self.avg_shortcut(x_copy)
class Up_ResidualBlock(nn.Module):
def __init__(self,
in_dim,
out_dim,
dropout,
mult,
temperal_upsample=False,
up_flag=False):
super().__init__()
# Shortcut path with upsample
if up_flag:
self.avg_shortcut = DupUp3D(
in_dim,
out_dim,
factor_t=2 if temperal_upsample else 1,
factor_s=2 if up_flag else 1,
)
else:
self.avg_shortcut = None
# Main path with residual blocks and upsample
upsamples = []
for _ in range(mult):
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
in_dim = out_dim
# Add the final upsample block
if up_flag:
mode = "upsample3d" if temperal_upsample else "upsample2d"
upsamples.append(Resample(out_dim, mode=mode))
self.upsamples = nn.Sequential(*upsamples)
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
x_main = x.clone()
for module in self.upsamples:
x_main = module(x_main, feat_cache, feat_idx)
if self.avg_shortcut is not None:
x_shortcut = self.avg_shortcut(x, first_chunk)
return x_main + x_shortcut
else:
return x_main
class Encoder3d(nn.Module):
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
# dimensions
dims = [dim * u for u in [1] + dim_mult]
scale = 1.0
# init block
self.conv1 = CausalConv3d(12, dims[0], 3, padding=1)
# downsample blocks
downsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
t_down_flag = (
temperal_downsample[i]
if i < len(temperal_downsample) else False)
downsamples.append(
Down_ResidualBlock(
in_dim=in_dim,
out_dim=out_dim,
dropout=dropout,
mult=num_res_blocks,
temperal_downsample=t_down_flag,
down_flag=i != len(dim_mult) - 1,
))
scale /= 2.0
self.downsamples = nn.Sequential(*downsamples)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(out_dim, out_dim, dropout),
AttentionBlock(out_dim),
ResidualBlock(out_dim, out_dim, dropout),
)
# # output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False),
nn.SiLU(),
CausalConv3d(out_dim, z_dim, 3, padding=1),
)
def forward(self, x, feat_cache=None, feat_idx=[0]):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
## downsamples
for layer in self.downsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
class Decoder3d(nn.Module):
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[False, True, True],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
scale = 1.0 / 2**(len(dim_mult) - 2)
# init block
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(dims[0], dims[0], dropout),
AttentionBlock(dims[0]),
ResidualBlock(dims[0], dims[0], dropout),
)
# upsample blocks
upsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
t_up_flag = temperal_upsample[i] if i < len(
temperal_upsample) else False
upsamples.append(
Up_ResidualBlock(
in_dim=in_dim,
out_dim=out_dim,
dropout=dropout,
mult=num_res_blocks + 1,
temperal_upsample=t_up_flag,
up_flag=i != len(dim_mult) - 1,
))
self.upsamples = nn.Sequential(*upsamples)
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False),
nn.SiLU(),
CausalConv3d(out_dim, 12, 3, padding=1),
)
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## upsamples
for layer in self.upsamples:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx, first_chunk)
else:
x = layer(x)
## head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat(
[
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device),
cache_x,
],
dim=2,
)
x = layer(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = layer(x)
return x
def count_conv3d(model):
count = 0
for m in model.modules():
if isinstance(m, CausalConv3d):
count += 1
return count
class WanVAE_(nn.Module):
_offload_hooks = ['encode', 'decode']
def __init__(
self,
dim=160,
dec_dim=256,
z_dim=16,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0,
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
self.temperal_upsample = temperal_downsample[::-1]
# modules
self.encoder = Encoder3d(
dim,
z_dim * 2,
dim_mult,
num_res_blocks,
attn_scales,
self.temperal_downsample,
dropout,
)
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
self.decoder = Decoder3d(
dec_dim,
z_dim,
dim_mult,
num_res_blocks,
attn_scales,
self.temperal_upsample,
dropout,
)
def forward(self, x, scale=[0, 1]):
mu = self.encode(x, scale)
x_recon = self.decode(mu, scale)
return x_recon, mu
def encode(self, x, scale = None, any_end_frame = False):
self.clear_cache()
x = patchify(x, patch_size=2)
## cache
t = x.shape[2]
if any_end_frame:
iter_ = 2 + (t - 2) // 4
else:
iter_ = 1 + (t - 1) // 4
## 对encode输入的x按时间拆分为1、4、4、4....
out_list = []
for i in range(iter_):
self._enc_conv_idx = [0]
if i == 0:
out_list.append(self.encoder(
x[:, :, :1, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx))
elif any_end_frame and i== iter_ -1:
out_list.append(self.encoder(
x[:, :, -1:, :, :],
feat_cache= None,
feat_idx=self._enc_conv_idx))
else:
out_list.append(self.encoder(
x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx))
self.clear_cache()
out = torch.cat(out_list, 2)
out_list = None
mu, log_var = self.conv1(out).chunk(2, dim=1)
if scale != None:
if isinstance(scale[0], torch.Tensor):
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
1, self.z_dim, 1, 1, 1)
else:
mu = (mu - scale[0]) * scale[1]
return mu
def decode(self, z, scale=None, any_end_frame = False):
self.clear_cache()
# z: [b,c,t,h,w]
if scale != None:
if isinstance(scale[0], torch.Tensor):
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
1, self.z_dim, 1, 1, 1)
else:
z = z / scale[1] + scale[0]
iter_ = z.shape[2]
x = self.conv2(z)
out_list = []
for i in range(iter_):
self._conv_idx = [0]
if i == 0:
out_list.append(self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx,
first_chunk = True)
)
elif any_end_frame and i==iter_-1:
out_list.append(self.decoder(
x[:, :, -1:, :, :],
feat_cache=None ,
feat_idx=self._conv_idx))
else:
out_list.append(self.decoder(
x[:, :, i:i + 1, :, :],
feat_cache=self._feat_map,
feat_idx=self._conv_idx))
self.clear_cache()
out = torch.cat(out_list, 2)
out = unpatchify(out, patch_size=2)
return out
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
return b
def spatial_tiled_decode(self, z, scale, tile_size, any_end_frame= False):
tile_sample_min_size = tile_size
tile_latent_min_size = int(tile_sample_min_size / 16)
tile_overlap_factor = 0.25
# z: [b,c,t,h,w]
if isinstance(scale[0], torch.Tensor):
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
1, self.z_dim, 1, 1, 1)
else:
z = z / scale[1] + scale[0]
overlap_size = int(tile_latent_min_size * (1 - tile_overlap_factor)) #8 0.75
blend_extent = int(tile_sample_min_size * tile_overlap_factor) #256 0.25
row_limit = tile_sample_min_size - blend_extent
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, z.shape[-2], overlap_size):
row = []
for j in range(0, z.shape[-1], overlap_size):
tile = z[:, :, :, i: i + tile_latent_min_size, j: j + tile_latent_min_size]
decoded = self.decode(tile, any_end_frame= any_end_frame)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=-1))
return torch.cat(result_rows, dim=-2)
def spatial_tiled_encode(self, x, scale, tile_size, any_end_frame = False) :
tile_sample_min_size = tile_size
tile_latent_min_size = int(tile_sample_min_size / 16)
tile_overlap_factor = 0.25
overlap_size = int(tile_sample_min_size * (1 - tile_overlap_factor))
blend_extent = int(tile_latent_min_size * tile_overlap_factor)
row_limit = tile_latent_min_size - blend_extent
# Split video into tiles and encode them separately.
rows = []
for i in range(0, x.shape[-2], overlap_size):
row = []
for j in range(0, x.shape[-1], overlap_size):
tile = x[:, :, :, i: i + tile_sample_min_size, j: j + tile_sample_min_size]
tile = self.encode(tile, any_end_frame= any_end_frame)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=-1))
mu = torch.cat(result_rows, dim=-2)
if isinstance(scale[0], torch.Tensor):
mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(
1, self.z_dim, 1, 1, 1)
else:
mu = (mu - scale[0]) * scale[1]
return mu
def reparameterize(self, mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps * std + mu
def sample(self, imgs, deterministic=False):
mu, log_var = self.encode(imgs)
if deterministic:
return mu
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0))
return mu + std * torch.randn_like(std)
def clear_cache(self):
self._conv_num = count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
# cache encode
self._enc_conv_num = count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num
def _video_vae(pretrained_path=None, z_dim=16, dim=160, device="cpu", **kwargs):
# params
cfg = dict(
dim=dim,
z_dim=z_dim,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, True],
dropout=0.0,
)
cfg.update(**kwargs)
# init model
with torch.device("meta"):
model = WanVAE_(**cfg)
from mmgp import offload
# load checkpoint
logging.info(f"loading {pretrained_path}")
# model.load_state_dict(
# torch.load(pretrained_path, map_location=device), assign=True)
# offload.save_model(model, "Wan_vae_2_2.safetensors")
# model.to(torch.bfloat16)
# offload.save_model(model, "Wan_vae_2_2_bf16.safetensors")
offload.load_model_data(model, pretrained_path.replace(".pth", ".safetensors"), writable_tensors= False)
return model
class Wan2_2_VAE:
def __init__(
self,
z_dim=48,
c_dim=160,
vae_pth=None,
dim_mult=[1, 2, 4, 4],
temperal_downsample=[False, True, True],
dtype=torch.float,
device="cuda",
):
self.dtype = dtype
self.device = device
mean = torch.tensor(
[
-0.2289,
-0.0052,
-0.1323,
-0.2339,
-0.2799,
0.0174,
0.1838,
0.1557,
-0.1382,
0.0542,
0.2813,
0.0891,
0.1570,
-0.0098,
0.0375,
-0.1825,
-0.2246,
-0.1207,
-0.0698,
0.5109,
0.2665,
-0.2108,
-0.2158,
0.2502,
-0.2055,
-0.0322,
0.1109,
0.1567,
-0.0729,
0.0899,
-0.2799,
-0.1230,
-0.0313,
-0.1649,
0.0117,
0.0723,
-0.2839,
-0.2083,
-0.0520,
0.3748,
0.0152,
0.1957,
0.1433,
-0.2944,
0.3573,
-0.0548,
-0.1681,
-0.0667,
],
dtype=dtype,
device=device,
)
std = torch.tensor(
[
0.4765,
1.0364,
0.4514,
1.1677,
0.5313,
0.4990,
0.4818,
0.5013,
0.8158,
1.0344,
0.5894,
1.0901,
0.6885,
0.6165,
0.8454,
0.4978,
0.5759,
0.3523,
0.7135,
0.6804,
0.5833,
1.4146,
0.8986,
0.5659,
0.7069,
0.5338,
0.4889,
0.4917,
0.4069,
0.4999,
0.6866,
0.4093,
0.5709,
0.6065,
0.6415,
0.4944,
0.5726,
1.2042,
0.5458,
1.6887,
0.3971,
1.0600,
0.3943,
0.5537,
0.5444,
0.4089,
0.7468,
0.7744,
],
dtype=dtype,
device=device,
)
self.scale = [mean, 1.0 / std]
# init model
self.model = (
_video_vae(
pretrained_path=vae_pth,
z_dim=z_dim,
dim=c_dim,
dim_mult=dim_mult,
temperal_downsample=temperal_downsample,
).eval().requires_grad_(False).to(device))
self.model._model_dtype = dtype
@staticmethod
def get_VAE_tile_size(vae_config, device_mem_capacity, mixed_precision):
# VAE Tiling
if vae_config == 0:
if mixed_precision:
device_mem_capacity = device_mem_capacity / 2
if device_mem_capacity >= 24000:
use_vae_config = 1
elif device_mem_capacity >= 8000:
use_vae_config = 2
else:
use_vae_config = 3
else:
use_vae_config = vae_config
if use_vae_config == 1:
VAE_tile_size = 0
elif use_vae_config == 2:
VAE_tile_size = 256
else:
VAE_tile_size = 128
return VAE_tile_size
def encode(self, videos, tile_size = 256, any_end_frame = False):
"""
videos: A list of videos each with shape [C, T, H, W].
"""
scale = [u.to(device = self.device) for u in self.scale]
if tile_size > 0 and False :
return [ self.model.spatial_tiled_encode(u.to(self.dtype).unsqueeze(0), scale, tile_size, any_end_frame=any_end_frame).float().squeeze(0) for u in videos ]
else:
return [ self.model.encode(u.to(self.dtype).unsqueeze(0), scale, any_end_frame=any_end_frame).float().squeeze(0) for u in videos ]
def decode(self, zs, tile_size = 256, any_end_frame = False):
scale = [u.to(device = self.device) for u in self.scale]
if tile_size > 0 :
return [ self.model.spatial_tiled_decode(u.to(self.dtype).unsqueeze(0), scale, tile_size, any_end_frame=any_end_frame).clamp_(-1, 1).float().squeeze(0) for u in zs ]
else:
return [ self.model.decode(u.to(self.dtype).unsqueeze(0), scale, any_end_frame=any_end_frame).clamp_(-1, 1).float().squeeze(0) for u in zs ]