mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-05 22:42:29 +00:00
102 lines
3.7 KiB
Python
102 lines
3.7 KiB
Python
import torch
|
|
|
|
def get_ltxv_text_encoder_filename(text_encoder_quantization):
|
|
text_encoder_filename = "ckpts/T5_xxl_1.1/T5_xxl_1.1_enc_bf16.safetensors"
|
|
if text_encoder_quantization =="int8":
|
|
text_encoder_filename = text_encoder_filename.replace("bf16", "quanto_bf16_int8")
|
|
return text_encoder_filename
|
|
|
|
class family_handler():
|
|
@staticmethod
|
|
def query_model_def(base_model_type, model_def):
|
|
flux_model = model_def.get("flux-model", "flux-dev")
|
|
flux_schnell = flux_model == "flux-schnell"
|
|
model_def_output = {
|
|
"image_outputs" : True,
|
|
"no_negative_prompt" : True,
|
|
}
|
|
if not flux_schnell:
|
|
model_def_output["embedded_guidance"] = True
|
|
|
|
|
|
return model_def_output
|
|
|
|
@staticmethod
|
|
def query_supported_types():
|
|
return ["flux"]
|
|
|
|
@staticmethod
|
|
def query_family_maps():
|
|
return {}, {}
|
|
|
|
@staticmethod
|
|
def get_rgb_factors(base_model_type ):
|
|
from shared.RGB_factors import get_rgb_factors
|
|
latent_rgb_factors, latent_rgb_factors_bias = get_rgb_factors("flux")
|
|
return latent_rgb_factors, latent_rgb_factors_bias
|
|
|
|
|
|
@staticmethod
|
|
def query_model_family():
|
|
return "flux"
|
|
|
|
@staticmethod
|
|
def query_family_infos():
|
|
return {"flux":(30, "Flux 1")}
|
|
|
|
@staticmethod
|
|
def query_model_files(computeList, base_model_type, model_filename, text_encoder_quantization):
|
|
text_encoder_filename = get_ltxv_text_encoder_filename(text_encoder_quantization)
|
|
return [
|
|
{
|
|
"repoId" : "DeepBeepMeep/Flux",
|
|
"sourceFolderList" : [""],
|
|
"fileList" : [ ["flux_vae.safetensors"] ]
|
|
},
|
|
{
|
|
"repoId" : "DeepBeepMeep/LTX_Video",
|
|
"sourceFolderList" : ["T5_xxl_1.1"],
|
|
"fileList" : [ ["added_tokens.json", "special_tokens_map.json", "spiece.model", "tokenizer_config.json"] + computeList(text_encoder_filename) ]
|
|
},
|
|
{
|
|
"repoId" : "DeepBeepMeep/HunyuanVideo",
|
|
"sourceFolderList" : [ "clip_vit_large_patch14", ],
|
|
"fileList" :[
|
|
["config.json", "merges.txt", "model.safetensors", "preprocessor_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json"],
|
|
]
|
|
}
|
|
]
|
|
|
|
@staticmethod
|
|
def load_model(model_filename, model_type, base_model_type, model_def, quantizeTransformer = False, text_encoder_quantization = None, dtype = torch.bfloat16, VAE_dtype = torch.float32, mixed_precision_transformer = False, save_quantized = False):
|
|
from .flux_main import model_factory
|
|
|
|
flux_model = model_factory(
|
|
checkpoint_dir="ckpts",
|
|
model_filename=model_filename,
|
|
model_type = model_type,
|
|
model_def = model_def,
|
|
base_model_type=base_model_type,
|
|
text_encoder_filename= get_ltxv_text_encoder_filename(text_encoder_quantization),
|
|
quantizeTransformer = quantizeTransformer,
|
|
dtype = dtype,
|
|
VAE_dtype = VAE_dtype,
|
|
mixed_precision_transformer = mixed_precision_transformer,
|
|
save_quantized = save_quantized
|
|
)
|
|
|
|
pipe = { "transformer": flux_model.model, "vae" : flux_model.vae, "text_encoder" : flux_model.clip, "text_encoder_2" : flux_model.t5}
|
|
|
|
return flux_model, pipe
|
|
|
|
@staticmethod
|
|
def update_default_settings(base_model_type, model_def, ui_defaults):
|
|
ui_defaults.update({
|
|
"embedded_guidance": 2.5,
|
|
})
|
|
if model_def.get("reference_image", False):
|
|
ui_defaults.update({
|
|
"video_prompt_type": "KI",
|
|
})
|
|
|