mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			104 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
 | 
						|
def get_ltxv_text_encoder_filename(text_encoder_quantization):
 | 
						|
    text_encoder_filename = "ckpts/T5_xxl_1.1/T5_xxl_1.1_enc_bf16.safetensors"
 | 
						|
    if text_encoder_quantization =="int8":
 | 
						|
        text_encoder_filename = text_encoder_filename.replace("bf16", "quanto_bf16_int8") 
 | 
						|
    return text_encoder_filename
 | 
						|
 | 
						|
class family_handler():
 | 
						|
    @staticmethod
 | 
						|
    def query_model_def(base_model_type, model_def):
 | 
						|
        flux_model = model_def.get("flux-model", "flux-dev")
 | 
						|
        flux_schnell = flux_model == "flux-schnell" 
 | 
						|
        model_def_output = {
 | 
						|
            "image_outputs" : True,
 | 
						|
            "no_negative_prompt" : True,
 | 
						|
        }
 | 
						|
        if flux_schnell:
 | 
						|
            model_def_output["no_guidance"] = True
 | 
						|
        else:
 | 
						|
            model_def_output["embedded_guidance"] = True
 | 
						|
            
 | 
						|
 | 
						|
        return model_def_output
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_supported_types():
 | 
						|
        return ["flux"]
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_family_maps():
 | 
						|
        return {}, {}
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_rgb_factors(model_type):
 | 
						|
        from shared.RGB_factors import get_rgb_factors
 | 
						|
        latent_rgb_factors, latent_rgb_factors_bias = get_rgb_factors("flux")
 | 
						|
        return latent_rgb_factors, latent_rgb_factors_bias
 | 
						|
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_model_family():
 | 
						|
        return "flux"
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_family_infos():
 | 
						|
        return {"flux":(30, "Flux 1")}
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_model_files(computeList, base_model_type, model_filename, text_encoder_quantization):
 | 
						|
        text_encoder_filename = get_ltxv_text_encoder_filename(text_encoder_quantization)    
 | 
						|
        return [
 | 
						|
            {  
 | 
						|
            "repoId" : "DeepBeepMeep/Flux", 
 | 
						|
            "sourceFolderList" :  [""],
 | 
						|
            "fileList" : [ ["flux_vae.safetensors"] ]   
 | 
						|
            },
 | 
						|
            {  
 | 
						|
            "repoId" : "DeepBeepMeep/LTX_Video", 
 | 
						|
            "sourceFolderList" :  ["T5_xxl_1.1"],
 | 
						|
            "fileList" : [ ["added_tokens.json", "special_tokens_map.json", "spiece.model", "tokenizer_config.json"] + computeList(text_encoder_filename)  ]   
 | 
						|
            },
 | 
						|
            {  
 | 
						|
            "repoId" : "DeepBeepMeep/HunyuanVideo", 
 | 
						|
            "sourceFolderList" :  [  "clip_vit_large_patch14",   ],
 | 
						|
            "fileList" :[ 
 | 
						|
                            ["config.json", "merges.txt", "model.safetensors", "preprocessor_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json"],
 | 
						|
                            ]
 | 
						|
            } 
 | 
						|
        ]
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def load_model(model_filename, model_type, base_model_type, model_def, quantizeTransformer = False, text_encoder_quantization = None, dtype = torch.bfloat16, VAE_dtype = torch.float32, mixed_precision_transformer = False, save_quantized = False):
 | 
						|
        from .flux_main  import model_factory
 | 
						|
 | 
						|
        flux_model = model_factory(
 | 
						|
            checkpoint_dir="ckpts",
 | 
						|
            model_filename=model_filename,
 | 
						|
            model_type = model_type, 
 | 
						|
            model_def = model_def,
 | 
						|
            base_model_type=base_model_type,
 | 
						|
            text_encoder_filename= get_ltxv_text_encoder_filename(text_encoder_quantization),
 | 
						|
            quantizeTransformer = quantizeTransformer,
 | 
						|
            dtype = dtype,
 | 
						|
            VAE_dtype = VAE_dtype, 
 | 
						|
            mixed_precision_transformer = mixed_precision_transformer,
 | 
						|
            save_quantized = save_quantized
 | 
						|
        )
 | 
						|
 | 
						|
        pipe = { "transformer": flux_model.model, "vae" : flux_model.vae, "text_encoder" : flux_model.clip, "text_encoder_2" : flux_model.t5}
 | 
						|
 | 
						|
        return flux_model, pipe
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def update_default_settings(base_model_type, model_def, ui_defaults):
 | 
						|
        ui_defaults.update({
 | 
						|
            "embedded_guidance":  2.5,
 | 
						|
        })            
 | 
						|
        if model_def.get("reference_image", False):
 | 
						|
            ui_defaults.update({
 | 
						|
                "video_prompt_type": "KI",
 | 
						|
            })
 | 
						|
 |