mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			41 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			41 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import cv2
 | 
						|
import torch
 | 
						|
import numpy as np
 | 
						|
import imageio
 | 
						|
import torchvision
 | 
						|
from einops import rearrange
 | 
						|
 | 
						|
 | 
						|
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8, quality=8):
 | 
						|
    videos = rearrange(videos, "b c t h w -> t b c h w")
 | 
						|
    outputs = []
 | 
						|
    for x in videos:
 | 
						|
        x = torchvision.utils.make_grid(x, nrow=n_rows)
 | 
						|
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
 | 
						|
        if rescale:
 | 
						|
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
 | 
						|
        x = torch.clamp(x,0,1)
 | 
						|
        x = (x * 255).numpy().astype(np.uint8)
 | 
						|
        outputs.append(x)
 | 
						|
 | 
						|
    os.makedirs(os.path.dirname(path), exist_ok=True)
 | 
						|
    imageio.mimsave(path, outputs, fps=fps, quality=quality)
 | 
						|
 | 
						|
def pad_image(crop_img, size, color=(255, 255, 255), resize_ratio=1):
 | 
						|
    crop_h, crop_w = crop_img.shape[:2]
 | 
						|
    target_w, target_h = size
 | 
						|
    scale_h, scale_w = target_h / crop_h, target_w / crop_w
 | 
						|
    if scale_w > scale_h:
 | 
						|
        resize_h = int(target_h*resize_ratio)
 | 
						|
        resize_w = int(crop_w / crop_h * resize_h)
 | 
						|
    else:
 | 
						|
        resize_w = int(target_w*resize_ratio)
 | 
						|
        resize_h = int(crop_h / crop_w * resize_w)
 | 
						|
    crop_img = cv2.resize(crop_img, (resize_w, resize_h))
 | 
						|
    pad_left = (target_w - resize_w) // 2
 | 
						|
    pad_top = (target_h - resize_h) // 2
 | 
						|
    pad_right = target_w - resize_w - pad_left
 | 
						|
    pad_bottom = target_h - resize_h - pad_top
 | 
						|
    crop_img = cv2.copyMakeBorder(crop_img, pad_top, pad_bottom, pad_left, pad_right, cv2.BORDER_CONSTANT, value=color)
 | 
						|
    return crop_img |