mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			159 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import math
 | 
						|
import torch
 | 
						|
import torch.nn as nn
 | 
						|
from einops import rearrange, repeat
 | 
						|
 | 
						|
from ..utils.helpers import to_2tuple
 | 
						|
 | 
						|
 | 
						|
class PatchEmbed(nn.Module):
 | 
						|
    """2D Image to Patch Embedding
 | 
						|
 | 
						|
    Image to Patch Embedding using Conv2d
 | 
						|
 | 
						|
    A convolution based approach to patchifying a 2D image w/ embedding projection.
 | 
						|
 | 
						|
    Based on the impl in https://github.com/google-research/vision_transformer
 | 
						|
 | 
						|
    Hacked together by / Copyright 2020 Ross Wightman
 | 
						|
 | 
						|
    Remove the _assert function in forward function to be compatible with multi-resolution images.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        patch_size=16,
 | 
						|
        in_chans=3,
 | 
						|
        embed_dim=768,
 | 
						|
        norm_layer=None,
 | 
						|
        flatten=True,
 | 
						|
        bias=True,
 | 
						|
        dtype=None,
 | 
						|
        device=None,
 | 
						|
    ):
 | 
						|
        factory_kwargs = {"dtype": dtype, "device": device}
 | 
						|
        super().__init__()
 | 
						|
        patch_size = to_2tuple(patch_size)
 | 
						|
        self.patch_size = patch_size
 | 
						|
        self.flatten = flatten
 | 
						|
 | 
						|
        self.proj = nn.Conv3d(
 | 
						|
            in_chans,
 | 
						|
            embed_dim,
 | 
						|
            kernel_size=patch_size,
 | 
						|
            stride=patch_size,
 | 
						|
            bias=bias,
 | 
						|
            **factory_kwargs
 | 
						|
        )
 | 
						|
        nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1))
 | 
						|
        if bias:
 | 
						|
            nn.init.zeros_(self.proj.bias)
 | 
						|
 | 
						|
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = self.proj(x)
 | 
						|
        shape = x.shape
 | 
						|
        if self.flatten:
 | 
						|
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
 | 
						|
        x = self.norm(x)
 | 
						|
        return x, shape
 | 
						|
 | 
						|
 | 
						|
class TextProjection(nn.Module):
 | 
						|
    """
 | 
						|
    Projects text embeddings. Also handles dropout for classifier-free guidance.
 | 
						|
 | 
						|
    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
 | 
						|
        factory_kwargs = {"dtype": dtype, "device": device}
 | 
						|
        super().__init__()
 | 
						|
        self.linear_1 = nn.Linear(
 | 
						|
            in_features=in_channels,
 | 
						|
            out_features=hidden_size,
 | 
						|
            bias=True,
 | 
						|
            **factory_kwargs
 | 
						|
        )
 | 
						|
        self.act_1 = act_layer()
 | 
						|
        self.linear_2 = nn.Linear(
 | 
						|
            in_features=hidden_size,
 | 
						|
            out_features=hidden_size,
 | 
						|
            bias=True,
 | 
						|
            **factory_kwargs
 | 
						|
        )
 | 
						|
 | 
						|
    def forward(self, caption):
 | 
						|
        hidden_states = self.linear_1(caption)
 | 
						|
        hidden_states = self.act_1(hidden_states)
 | 
						|
        hidden_states = self.linear_2(hidden_states)
 | 
						|
        return hidden_states
 | 
						|
 | 
						|
 | 
						|
def timestep_embedding(t, dim, max_period=10000):
 | 
						|
    """
 | 
						|
    Create sinusoidal timestep embeddings.
 | 
						|
 | 
						|
    Args:
 | 
						|
        t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
 | 
						|
        dim (int): the dimension of the output.
 | 
						|
        max_period (int): controls the minimum frequency of the embeddings.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.
 | 
						|
 | 
						|
    .. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
 | 
						|
    """
 | 
						|
    half = dim // 2
 | 
						|
    freqs = torch.exp(
 | 
						|
        -math.log(max_period)
 | 
						|
        * torch.arange(start=0, end=half, dtype=torch.float32)
 | 
						|
        / half
 | 
						|
    ).to(device=t.device)
 | 
						|
    args = t[:, None].float() * freqs[None]
 | 
						|
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
 | 
						|
    if dim % 2:
 | 
						|
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
 | 
						|
    return embedding
 | 
						|
 | 
						|
 | 
						|
class TimestepEmbedder(nn.Module):
 | 
						|
    """
 | 
						|
    Embeds scalar timesteps into vector representations.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        hidden_size,
 | 
						|
        act_layer,
 | 
						|
        frequency_embedding_size=256,
 | 
						|
        max_period=10000,
 | 
						|
        out_size=None,
 | 
						|
        dtype=None,
 | 
						|
        device=None,
 | 
						|
    ):
 | 
						|
        factory_kwargs = {"dtype": dtype, "device": device}
 | 
						|
        super().__init__()
 | 
						|
        self.frequency_embedding_size = frequency_embedding_size
 | 
						|
        self.max_period = max_period
 | 
						|
        if out_size is None:
 | 
						|
            out_size = hidden_size
 | 
						|
 | 
						|
        self.mlp = nn.Sequential(
 | 
						|
            nn.Linear(
 | 
						|
                frequency_embedding_size, hidden_size, bias=True, **factory_kwargs
 | 
						|
            ),
 | 
						|
            act_layer(),
 | 
						|
            nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
 | 
						|
        )
 | 
						|
        nn.init.normal_(self.mlp[0].weight, std=0.02)
 | 
						|
        nn.init.normal_(self.mlp[2].weight, std=0.02)
 | 
						|
 | 
						|
    def forward(self, t):
 | 
						|
        t_freq = timestep_embedding(
 | 
						|
            t, self.frequency_embedding_size, self.max_period
 | 
						|
        ).type(self.mlp[0].weight.dtype)
 | 
						|
        t_emb = self.mlp(t_freq)
 | 
						|
        return t_emb
 |