mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
508 lines
22 KiB
Python
508 lines
22 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import gc
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
import sys
|
|
import types
|
|
from contextlib import contextmanager
|
|
from functools import partial
|
|
from mmgp import offload
|
|
import torch
|
|
import torch.cuda.amp as amp
|
|
import torch.distributed as dist
|
|
from tqdm import tqdm
|
|
from PIL import Image
|
|
import torchvision.transforms.functional as TF
|
|
import torch.nn.functional as F
|
|
from .distributed.fsdp import shard_model
|
|
from .modules.model import WanModel
|
|
from .modules.t5 import T5EncoderModel
|
|
from .modules.vae import WanVAE
|
|
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
|
get_sampling_sigmas, retrieve_timesteps)
|
|
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
|
from wan.modules.posemb_layers import get_rotary_pos_embed
|
|
from .utils.vace_preprocessor import VaceVideoProcessor
|
|
|
|
|
|
def optimized_scale(positive_flat, negative_flat):
|
|
|
|
# Calculate dot production
|
|
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
|
|
|
|
# Squared norm of uncondition
|
|
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
|
|
|
|
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
|
|
st_star = dot_product / squared_norm
|
|
|
|
return st_star
|
|
|
|
|
|
class WanT2V:
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
checkpoint_dir,
|
|
device_id=0,
|
|
rank=0,
|
|
t5_fsdp=False,
|
|
dit_fsdp=False,
|
|
use_usp=False,
|
|
t5_cpu=False,
|
|
model_filename = None,
|
|
text_encoder_filename = None
|
|
):
|
|
r"""
|
|
Initializes the Wan text-to-video generation model components.
|
|
|
|
Args:
|
|
config (EasyDict):
|
|
Object containing model parameters initialized from config.py
|
|
checkpoint_dir (`str`):
|
|
Path to directory containing model checkpoints
|
|
device_id (`int`, *optional*, defaults to 0):
|
|
Id of target GPU device
|
|
rank (`int`, *optional*, defaults to 0):
|
|
Process rank for distributed training
|
|
t5_fsdp (`bool`, *optional*, defaults to False):
|
|
Enable FSDP sharding for T5 model
|
|
dit_fsdp (`bool`, *optional*, defaults to False):
|
|
Enable FSDP sharding for DiT model
|
|
use_usp (`bool`, *optional*, defaults to False):
|
|
Enable distribution strategy of USP.
|
|
t5_cpu (`bool`, *optional*, defaults to False):
|
|
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
|
"""
|
|
self.device = torch.device(f"cuda:{device_id}")
|
|
self.config = config
|
|
self.rank = rank
|
|
self.t5_cpu = t5_cpu
|
|
|
|
self.num_train_timesteps = config.num_train_timesteps
|
|
self.param_dtype = config.param_dtype
|
|
|
|
shard_fn = partial(shard_model, device_id=device_id)
|
|
self.text_encoder = T5EncoderModel(
|
|
text_len=config.text_len,
|
|
dtype=config.t5_dtype,
|
|
device=torch.device('cpu'),
|
|
checkpoint_path=text_encoder_filename,
|
|
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
|
shard_fn=shard_fn if t5_fsdp else None)
|
|
|
|
self.vae_stride = config.vae_stride
|
|
self.patch_size = config.patch_size
|
|
|
|
|
|
self.vae = WanVAE(
|
|
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
|
device=self.device)
|
|
|
|
logging.info(f"Creating WanModel from {model_filename}")
|
|
from mmgp import offload
|
|
|
|
|
|
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel, writable_tensors= False)
|
|
|
|
self.model.eval().requires_grad_(False)
|
|
|
|
if use_usp:
|
|
from xfuser.core.distributed import \
|
|
get_sequence_parallel_world_size
|
|
|
|
from .distributed.xdit_context_parallel import (usp_attn_forward,
|
|
usp_dit_forward)
|
|
for block in self.model.blocks:
|
|
block.self_attn.forward = types.MethodType(
|
|
usp_attn_forward, block.self_attn)
|
|
self.model.forward = types.MethodType(usp_dit_forward, self.model)
|
|
self.sp_size = get_sequence_parallel_world_size()
|
|
else:
|
|
self.sp_size = 1
|
|
|
|
# if dist.is_initialized():
|
|
# dist.barrier()
|
|
# if dit_fsdp:
|
|
# self.model = shard_fn(self.model)
|
|
# else:
|
|
# self.model.to(self.device)
|
|
|
|
self.sample_neg_prompt = config.sample_neg_prompt
|
|
|
|
if "Vace" in model_filename:
|
|
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
|
|
min_area=480*832,
|
|
max_area=480*832,
|
|
min_fps=config.sample_fps,
|
|
max_fps=config.sample_fps,
|
|
zero_start=True,
|
|
seq_len=32760,
|
|
keep_last=True)
|
|
|
|
def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0):
|
|
if ref_images is None:
|
|
ref_images = [None] * len(frames)
|
|
else:
|
|
assert len(frames) == len(ref_images)
|
|
|
|
if masks is None:
|
|
latents = self.vae.encode(frames, tile_size = tile_size)
|
|
else:
|
|
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
|
|
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
|
|
inactive = self.vae.encode(inactive, tile_size = tile_size)
|
|
reactive = self.vae.encode(reactive, tile_size = tile_size)
|
|
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
|
|
|
|
cat_latents = []
|
|
for latent, refs in zip(latents, ref_images):
|
|
if refs is not None:
|
|
if masks is None:
|
|
ref_latent = self.vae.encode(refs, tile_size = tile_size)
|
|
else:
|
|
ref_latent = self.vae.encode(refs, tile_size = tile_size)
|
|
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
|
|
assert all([x.shape[1] == 1 for x in ref_latent])
|
|
latent = torch.cat([*ref_latent, latent], dim=1)
|
|
cat_latents.append(latent)
|
|
return cat_latents
|
|
|
|
def vace_encode_masks(self, masks, ref_images=None):
|
|
if ref_images is None:
|
|
ref_images = [None] * len(masks)
|
|
else:
|
|
assert len(masks) == len(ref_images)
|
|
|
|
result_masks = []
|
|
for mask, refs in zip(masks, ref_images):
|
|
c, depth, height, width = mask.shape
|
|
new_depth = int((depth + 3) // self.vae_stride[0])
|
|
height = 2 * (int(height) // (self.vae_stride[1] * 2))
|
|
width = 2 * (int(width) // (self.vae_stride[2] * 2))
|
|
|
|
# reshape
|
|
mask = mask[0, :, :, :]
|
|
mask = mask.view(
|
|
depth, height, self.vae_stride[1], width, self.vae_stride[1]
|
|
) # depth, height, 8, width, 8
|
|
mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width
|
|
mask = mask.reshape(
|
|
self.vae_stride[1] * self.vae_stride[2], depth, height, width
|
|
) # 8*8, depth, height, width
|
|
|
|
# interpolation
|
|
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
|
|
|
|
if refs is not None:
|
|
length = len(refs)
|
|
mask_pad = torch.zeros_like(mask[:, :length, :, :])
|
|
mask = torch.cat((mask_pad, mask), dim=1)
|
|
result_masks.append(mask)
|
|
return result_masks
|
|
|
|
def vace_latent(self, z, m):
|
|
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
|
|
|
|
def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size, device, original_video = False, trim_video= 0):
|
|
image_sizes = []
|
|
for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
|
|
if sub_src_mask is not None and sub_src_video is not None:
|
|
src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask, max_frames= num_frames, trim_video = trim_video)
|
|
# src_video is [-1, 1], 0 = inpainting area (in fact 127 in [0, 255])
|
|
# src_mask is [-1, 1], 0 = preserve original video (in fact 127 in [0, 255]) and 1 = Inpainting (in fact 255 in [0, 255])
|
|
src_video[i] = src_video[i].to(device)
|
|
src_mask[i] = src_mask[i].to(device)
|
|
src_video_shape = src_video[i].shape
|
|
if src_video_shape[1] != num_frames:
|
|
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
|
|
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
|
|
src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
|
|
image_sizes.append(src_video[i].shape[2:])
|
|
elif sub_src_video is None:
|
|
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
|
|
src_mask[i] = torch.ones_like(src_video[i], device=device)
|
|
image_sizes.append(image_size)
|
|
else:
|
|
src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video, max_frames= num_frames, trim_video = trim_video)
|
|
src_video[i] = src_video[i].to(device)
|
|
src_mask[i] = torch.zeros_like(src_video[i], device=device) if original_video else torch.ones_like(src_video[i], device=device)
|
|
src_video_shape = src_video[i].shape
|
|
if src_video_shape[1] != num_frames:
|
|
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
|
|
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
|
|
image_sizes.append(src_video[i].shape[2:])
|
|
|
|
for i, ref_images in enumerate(src_ref_images):
|
|
if ref_images is not None:
|
|
image_size = image_sizes[i]
|
|
for j, ref_img in enumerate(ref_images):
|
|
if ref_img is not None:
|
|
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
|
|
if ref_img.shape[-2:] != image_size:
|
|
canvas_height, canvas_width = image_size
|
|
ref_height, ref_width = ref_img.shape[-2:]
|
|
white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
|
|
scale = min(canvas_height / ref_height, canvas_width / ref_width)
|
|
new_height = int(ref_height * scale)
|
|
new_width = int(ref_width * scale)
|
|
resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
|
|
top = (canvas_height - new_height) // 2
|
|
left = (canvas_width - new_width) // 2
|
|
white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
|
|
ref_img = white_canvas
|
|
src_ref_images[i][j] = ref_img.to(device)
|
|
return src_video, src_mask, src_ref_images
|
|
|
|
def decode_latent(self, zs, ref_images=None, tile_size= 0 ):
|
|
if ref_images is None:
|
|
ref_images = [None] * len(zs)
|
|
else:
|
|
assert len(zs) == len(ref_images)
|
|
|
|
trimed_zs = []
|
|
for z, refs in zip(zs, ref_images):
|
|
if refs is not None:
|
|
z = z[:, len(refs):, :, :]
|
|
trimed_zs.append(z)
|
|
|
|
return self.vae.decode(trimed_zs, tile_size= tile_size)
|
|
|
|
def generate(self,
|
|
input_prompt,
|
|
input_frames= None,
|
|
input_masks = None,
|
|
input_ref_images = None,
|
|
context_scale=1.0,
|
|
size=(1280, 720),
|
|
frame_num=81,
|
|
shift=5.0,
|
|
sample_solver='unipc',
|
|
sampling_steps=50,
|
|
guide_scale=5.0,
|
|
n_prompt="",
|
|
seed=-1,
|
|
offload_model=True,
|
|
callback = None,
|
|
enable_RIFLEx = None,
|
|
VAE_tile_size = 0,
|
|
joint_pass = False,
|
|
slg_layers = None,
|
|
slg_start = 0.0,
|
|
slg_end = 1.0,
|
|
cfg_star_switch = True,
|
|
cfg_zero_step = 5,
|
|
):
|
|
r"""
|
|
Generates video frames from text prompt using diffusion process.
|
|
|
|
Args:
|
|
input_prompt (`str`):
|
|
Text prompt for content generation
|
|
size (tupele[`int`], *optional*, defaults to (1280,720)):
|
|
Controls video resolution, (width,height).
|
|
frame_num (`int`, *optional*, defaults to 81):
|
|
How many frames to sample from a video. The number should be 4n+1
|
|
shift (`float`, *optional*, defaults to 5.0):
|
|
Noise schedule shift parameter. Affects temporal dynamics
|
|
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
|
Solver used to sample the video.
|
|
sampling_steps (`int`, *optional*, defaults to 40):
|
|
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
|
guide_scale (`float`, *optional*, defaults 5.0):
|
|
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
|
n_prompt (`str`, *optional*, defaults to ""):
|
|
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
|
seed (`int`, *optional*, defaults to -1):
|
|
Random seed for noise generation. If -1, use random seed.
|
|
offload_model (`bool`, *optional*, defaults to True):
|
|
If True, offloads models to CPU during generation to save VRAM
|
|
|
|
Returns:
|
|
torch.Tensor:
|
|
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
|
- C: Color channels (3 for RGB)
|
|
- N: Number of frames (81)
|
|
- H: Frame height (from size)
|
|
- W: Frame width from size)
|
|
"""
|
|
# preprocess
|
|
|
|
if n_prompt == "":
|
|
n_prompt = self.sample_neg_prompt
|
|
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
|
seed_g = torch.Generator(device=self.device)
|
|
seed_g.manual_seed(seed)
|
|
|
|
if not self.t5_cpu:
|
|
# self.text_encoder.model.to(self.device)
|
|
context = self.text_encoder([input_prompt], self.device)
|
|
context_null = self.text_encoder([n_prompt], self.device)
|
|
if offload_model:
|
|
self.text_encoder.model.cpu()
|
|
else:
|
|
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
|
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
|
context = [t.to(self.device) for t in context]
|
|
context_null = [t.to(self.device) for t in context_null]
|
|
|
|
if input_frames != None:
|
|
# vace context encode
|
|
input_frames = [u.to(self.device) for u in input_frames]
|
|
input_ref_images = [ None if u == None else [v.to(self.device) for v in u] for u in input_ref_images]
|
|
input_masks = [u.to(self.device) for u in input_masks]
|
|
|
|
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size)
|
|
m0 = self.vace_encode_masks(input_masks, input_ref_images)
|
|
z = self.vace_latent(z0, m0)
|
|
|
|
target_shape = list(z0[0].shape)
|
|
target_shape[0] = int(target_shape[0] / 2)
|
|
else:
|
|
F = frame_num
|
|
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
|
size[1] // self.vae_stride[1],
|
|
size[0] // self.vae_stride[2])
|
|
|
|
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
|
(self.patch_size[1] * self.patch_size[2]) *
|
|
target_shape[1] / self.sp_size) * self.sp_size
|
|
|
|
|
|
noise = [
|
|
torch.randn(
|
|
target_shape[0],
|
|
target_shape[1],
|
|
target_shape[2],
|
|
target_shape[3],
|
|
dtype=torch.float32,
|
|
device=self.device,
|
|
generator=seed_g)
|
|
]
|
|
|
|
@contextmanager
|
|
def noop_no_sync():
|
|
yield
|
|
|
|
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
|
|
|
# evaluation mode
|
|
|
|
if sample_solver == 'unipc':
|
|
sample_scheduler = FlowUniPCMultistepScheduler(
|
|
num_train_timesteps=self.num_train_timesteps,
|
|
shift=1,
|
|
use_dynamic_shifting=False)
|
|
sample_scheduler.set_timesteps(
|
|
sampling_steps, device=self.device, shift=shift)
|
|
timesteps = sample_scheduler.timesteps
|
|
elif sample_solver == 'dpm++':
|
|
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
|
num_train_timesteps=self.num_train_timesteps,
|
|
shift=1,
|
|
use_dynamic_shifting=False)
|
|
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
|
timesteps, _ = retrieve_timesteps(
|
|
sample_scheduler,
|
|
device=self.device,
|
|
sigmas=sampling_sigmas)
|
|
else:
|
|
raise NotImplementedError("Unsupported solver.")
|
|
|
|
# sample videos
|
|
latents = noise
|
|
batch_size =len(latents)
|
|
freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= enable_RIFLEx)
|
|
arg_c = {'context': context, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self}
|
|
arg_null = {'context': context_null, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self}
|
|
arg_both = {'context': context, 'context2': context_null, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self}
|
|
if input_frames != None:
|
|
vace_dict = {'vace_context' : z, 'vace_context_scale' : context_scale}
|
|
arg_c.update(vace_dict)
|
|
arg_null.update(vace_dict)
|
|
arg_both.update(vace_dict)
|
|
|
|
if self.model.enable_teacache:
|
|
self.model.compute_teacache_threshold(self.model.teacache_start_step, timesteps, self.model.teacache_multiplier)
|
|
if callback != None:
|
|
callback(-1, True)
|
|
for i, t in enumerate(tqdm(timesteps)):
|
|
latent_model_input = latents
|
|
slg_layers_local = None
|
|
if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps):
|
|
slg_layers_local = slg_layers
|
|
timestep = [t]
|
|
offload.set_step_no_for_lora(self.model, i)
|
|
timestep = torch.stack(timestep)
|
|
|
|
# self.model.to(self.device)
|
|
if joint_pass:
|
|
noise_pred_cond, noise_pred_uncond = self.model(
|
|
latent_model_input, t=timestep, current_step=i, slg_layers=slg_layers_local, **arg_both)
|
|
if self._interrupt:
|
|
return None
|
|
else:
|
|
noise_pred_cond = self.model(
|
|
latent_model_input, t=timestep,current_step=i, is_uncond = False, **arg_c)[0]
|
|
if self._interrupt:
|
|
return None
|
|
noise_pred_uncond = self.model(
|
|
latent_model_input, t=timestep,current_step=i, is_uncond = True, slg_layers=slg_layers_local, **arg_null)[0]
|
|
if self._interrupt:
|
|
return None
|
|
|
|
del latent_model_input
|
|
|
|
# CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/
|
|
noise_pred_text = noise_pred_cond
|
|
if cfg_star_switch:
|
|
positive_flat = noise_pred_text.view(batch_size, -1)
|
|
negative_flat = noise_pred_uncond.view(batch_size, -1)
|
|
|
|
alpha = optimized_scale(positive_flat,negative_flat)
|
|
alpha = alpha.view(batch_size, 1, 1, 1)
|
|
|
|
if (i <= cfg_zero_step):
|
|
noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred...
|
|
else:
|
|
noise_pred_uncond *= alpha
|
|
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond)
|
|
del noise_pred_uncond
|
|
|
|
temp_x0 = sample_scheduler.step(
|
|
noise_pred.unsqueeze(0),
|
|
t,
|
|
latents[0].unsqueeze(0),
|
|
return_dict=False,
|
|
generator=seed_g)[0]
|
|
latents = [temp_x0.squeeze(0)]
|
|
del temp_x0
|
|
|
|
if callback is not None:
|
|
callback(i, False)
|
|
|
|
x0 = latents
|
|
if offload_model:
|
|
self.model.cpu()
|
|
torch.cuda.empty_cache()
|
|
if self.rank == 0:
|
|
|
|
if input_frames == None:
|
|
videos = self.vae.decode(x0, VAE_tile_size)
|
|
else:
|
|
videos = self.decode_latent(x0, input_ref_images, VAE_tile_size)
|
|
|
|
|
|
del noise, latents
|
|
del sample_scheduler
|
|
if offload_model:
|
|
gc.collect()
|
|
torch.cuda.synchronize()
|
|
if dist.is_initialized():
|
|
dist.barrier()
|
|
|
|
return videos[0] if self.rank == 0 else None
|