mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			312 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from dataclasses import dataclass
 | 
						|
 | 
						|
import torch
 | 
						|
from torch import Tensor, nn
 | 
						|
 | 
						|
from .modules.layers import (
 | 
						|
    DoubleStreamBlock,
 | 
						|
    EmbedND,
 | 
						|
    LastLayer,
 | 
						|
    MLPEmbedder,
 | 
						|
    SingleStreamBlock,
 | 
						|
    timestep_embedding,
 | 
						|
    DistilledGuidance,
 | 
						|
    ChromaModulationOut,
 | 
						|
    SigLIPMultiFeatProjModel,
 | 
						|
)
 | 
						|
from .modules.lora import LinearLora, replace_linear_with_lora
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class FluxParams:
 | 
						|
    in_channels: int
 | 
						|
    out_channels: int
 | 
						|
    vec_in_dim: int
 | 
						|
    context_in_dim: int
 | 
						|
    hidden_size: int
 | 
						|
    mlp_ratio: float
 | 
						|
    num_heads: int
 | 
						|
    depth: int
 | 
						|
    depth_single_blocks: int
 | 
						|
    axes_dim: list[int]
 | 
						|
    theta: int
 | 
						|
    qkv_bias: bool
 | 
						|
    guidance_embed: bool
 | 
						|
    chroma: bool = False
 | 
						|
    eso: bool = False
 | 
						|
 | 
						|
class Flux(nn.Module):
 | 
						|
    """
 | 
						|
    Transformer model for flow matching on sequences.
 | 
						|
    """
 | 
						|
    def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
 | 
						|
        # This function slices up the modulations tensor which has the following layout:
 | 
						|
        #   single     : num_single_blocks * 3 elements
 | 
						|
        #   double_img : num_double_blocks * 6 elements
 | 
						|
        #   double_txt : num_double_blocks * 6 elements
 | 
						|
        #   final      : 2 elements
 | 
						|
        if block_type == "final":
 | 
						|
            return (tensor[:, -2:-1, :], tensor[:, -1:, :])
 | 
						|
        single_block_count = self.params.depth_single_blocks
 | 
						|
        double_block_count = self.params.depth
 | 
						|
        offset = 3 * idx
 | 
						|
        if block_type == "single":
 | 
						|
            return ChromaModulationOut.from_offset(tensor, offset)
 | 
						|
        # Double block modulations are 6 elements so we double 3 * idx.
 | 
						|
        offset *= 2
 | 
						|
        if block_type in {"double_img", "double_txt"}:
 | 
						|
            # Advance past the single block modulations.
 | 
						|
            offset += 3 * single_block_count
 | 
						|
            if block_type == "double_txt":
 | 
						|
                # Advance past the double block img modulations.
 | 
						|
                offset += 6 * double_block_count
 | 
						|
            return (
 | 
						|
                ChromaModulationOut.from_offset(tensor, offset),
 | 
						|
                ChromaModulationOut.from_offset(tensor, offset + 3),
 | 
						|
            )
 | 
						|
        raise ValueError("Bad block_type")
 | 
						|
    
 | 
						|
    def __init__(self, params: FluxParams):
 | 
						|
        super().__init__()
 | 
						|
 | 
						|
        self.params = params
 | 
						|
        self.in_channels = params.in_channels
 | 
						|
        self.out_channels = params.out_channels
 | 
						|
        self.chroma = params.chroma
 | 
						|
        if params.hidden_size % params.num_heads != 0:
 | 
						|
            raise ValueError(
 | 
						|
                f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
 | 
						|
            )
 | 
						|
        pe_dim = params.hidden_size // params.num_heads
 | 
						|
        if sum(params.axes_dim) != pe_dim:
 | 
						|
            raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
 | 
						|
        self.hidden_size = params.hidden_size
 | 
						|
        self.num_heads = params.num_heads
 | 
						|
        self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
 | 
						|
        self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
 | 
						|
 | 
						|
        self.guidance_in = (
 | 
						|
            MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
 | 
						|
        )
 | 
						|
        self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
 | 
						|
        if self.chroma:
 | 
						|
            self.distilled_guidance_layer = DistilledGuidance(
 | 
						|
                        in_dim=64,
 | 
						|
                        hidden_dim=5120,
 | 
						|
                        out_dim=3072, 
 | 
						|
                        n_layers=5,
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
 | 
						|
            self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
 | 
						|
 | 
						|
        self.double_blocks = nn.ModuleList(
 | 
						|
            [
 | 
						|
                DoubleStreamBlock(
 | 
						|
                    self.hidden_size,
 | 
						|
                    self.num_heads,
 | 
						|
                    mlp_ratio=params.mlp_ratio,
 | 
						|
                    qkv_bias=params.qkv_bias,
 | 
						|
                    chroma_modulation = self.chroma,
 | 
						|
                )
 | 
						|
                for _ in range(params.depth)
 | 
						|
            ]
 | 
						|
        )
 | 
						|
 | 
						|
        self.single_blocks = nn.ModuleList(
 | 
						|
            [
 | 
						|
                SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, chroma_modulation = self.chroma)
 | 
						|
                for _ in range(params.depth_single_blocks)
 | 
						|
            ]
 | 
						|
        )
 | 
						|
 | 
						|
        self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, chroma_modulation = self.chroma)
 | 
						|
 | 
						|
    def preprocess_loras(self, model_type, sd):
 | 
						|
        new_sd = {}
 | 
						|
        if len(sd) == 0: return sd
 | 
						|
 | 
						|
        def swap_scale_shift(weight):
 | 
						|
            shift, scale = weight.chunk(2, dim=0)
 | 
						|
            new_weight = torch.cat([scale, shift], dim=0)
 | 
						|
            return new_weight
 | 
						|
 | 
						|
        first_key= next(iter(sd))
 | 
						|
        if first_key.startswith("lora_unet_"):
 | 
						|
            new_sd = {}
 | 
						|
            print("Converting Lora Safetensors format to Lora Diffusers format")
 | 
						|
            repl_list = ["linear1", "linear2", "modulation", "img_attn", "txt_attn", "img_mlp", "txt_mlp", "img_mod", "txt_mod"]
 | 
						|
            src_list = ["_" + k + "." for k in repl_list]
 | 
						|
            src_list2 = ["_" + k + "_" for k in repl_list]
 | 
						|
            tgt_list = ["." + k + "." for k in repl_list]
 | 
						|
 | 
						|
            for k,v in sd.items():
 | 
						|
                k = k.replace("lora_unet_blocks_","diffusion_model.blocks.")
 | 
						|
                k = k.replace("lora_unet__blocks_","diffusion_model.blocks.")
 | 
						|
                k = k.replace("lora_unet_single_blocks_","diffusion_model.single_blocks.")
 | 
						|
                k = k.replace("lora_unet_double_blocks_","diffusion_model.double_blocks.")
 | 
						|
 | 
						|
                for s,s2, t in zip(src_list, src_list2, tgt_list):
 | 
						|
                    k = k.replace(s,t)
 | 
						|
                    k = k.replace(s2,t)
 | 
						|
 | 
						|
                k = k.replace("lora_up","lora_B")
 | 
						|
                k = k.replace("lora_down","lora_A")
 | 
						|
 | 
						|
                new_sd[k] = v
 | 
						|
 | 
						|
        elif first_key.startswith("transformer."):
 | 
						|
            root_src = ["time_text_embed.timestep_embedder.linear_1", "time_text_embed.timestep_embedder.linear_2", "time_text_embed.text_embedder.linear_1", "time_text_embed.text_embedder.linear_2",
 | 
						|
                    "time_text_embed.guidance_embedder.linear_1", "time_text_embed.guidance_embedder.linear_2",
 | 
						|
                    "x_embedder", "context_embedder", "proj_out" ]
 | 
						|
 | 
						|
            root_tgt = ["time_in.in_layer", "time_in.out_layer", "vector_in.in_layer", "vector_in.out_layer",
 | 
						|
                    "guidance_in.in_layer", "guidance_in.out_layer",
 | 
						|
                    "img_in", "txt_in", "final_layer.linear" ]
 | 
						|
 | 
						|
            double_src = ["norm1.linear", "norm1_context.linear", "attn.norm_q",  "attn.norm_k", "ff.net.0.proj", "ff.net.2", "ff_context.net.0.proj", "ff_context.net.2", "attn.to_out.0" ,"attn.to_add_out", "attn.to_out", ".attn.to_", ".attn.add_q_proj.", ".attn.add_k_proj.", ".attn.add_v_proj.",  ] 
 | 
						|
            double_tgt = ["img_mod.lin", "txt_mod.lin", "img_attn.norm.query_norm", "img_attn.norm.key_norm", "img_mlp.0", "img_mlp.2", "txt_mlp.0", "txt_mlp.2", "img_attn.proj", "txt_attn.proj", "img_attn.proj", ".img_attn.", ".txt_attn.q.", ".txt_attn.k.", ".txt_attn.v."] 
 | 
						|
 | 
						|
            single_src = ["norm.linear", "attn.norm_q", "attn.norm_k", "proj_out",".attn.to_q.", ".attn.to_k.", ".attn.to_v.", ".proj_mlp."]
 | 
						|
            single_tgt = ["modulation.lin","norm.query_norm", "norm.key_norm", "linear2", ".linear1_attn_q.", ".linear1_attn_k.", ".linear1_attn_v.", ".linear1_mlp."]
 | 
						|
 | 
						|
 | 
						|
            for k,v in sd.items():
 | 
						|
                if k.startswith("transformer.single_transformer_blocks"):
 | 
						|
                    k = k.replace("transformer.single_transformer_blocks", "diffusion_model.single_blocks")
 | 
						|
                    for src, tgt in zip(single_src, single_tgt):
 | 
						|
                        k = k.replace(src, tgt)
 | 
						|
                elif k.startswith("transformer.transformer_blocks"):
 | 
						|
                    k = k.replace("transformer.transformer_blocks", "diffusion_model.double_blocks")
 | 
						|
                    for src, tgt in zip(double_src, double_tgt):
 | 
						|
                        k = k.replace(src, tgt)
 | 
						|
                else:
 | 
						|
                    k = k.replace("transformer.", "diffusion_model.")
 | 
						|
                    for src, tgt in zip(root_src, root_tgt):
 | 
						|
                        k = k.replace(src, tgt)
 | 
						|
 | 
						|
                    if "norm_out.linear" in k:
 | 
						|
                        if "lora_B" in k:
 | 
						|
                            v = swap_scale_shift(v)
 | 
						|
                        k = k.replace("norm_out.linear", "final_layer.adaLN_modulation.1")            
 | 
						|
                new_sd[k] = v
 | 
						|
        # elif not first_key.startswith("diffusion_model.") and not first_key.startswith("transformer."):
 | 
						|
        #     for k,v in sd.items():
 | 
						|
        #         if "double" in k:
 | 
						|
        #             k = k.replace(".processor.proj_lora1.", ".img_attn.proj.lora_")
 | 
						|
        #             k = k.replace(".processor.proj_lora2.", ".txt_attn.proj.lora_")
 | 
						|
        #             k = k.replace(".processor.qkv_lora1.", ".img_attn.qkv.lora_")
 | 
						|
        #             k = k.replace(".processor.qkv_lora2.", ".txt_attn.qkv.lora_")
 | 
						|
        #         else:
 | 
						|
        #             k = k.replace(".processor.qkv_lora.", ".linear1_qkv.lora_")
 | 
						|
        #             k = k.replace(".processor.proj_lora.", ".linear2.lora_")
 | 
						|
 | 
						|
        #         k = "diffusion_model." + k
 | 
						|
        #         new_sd[k] = v
 | 
						|
        #     from mmgp import safetensors2
 | 
						|
        #     safetensors2.torch_write_file(new_sd, "fff.safetensors")
 | 
						|
        else:
 | 
						|
            new_sd = sd
 | 
						|
        return new_sd    
 | 
						|
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        img: Tensor,
 | 
						|
        img_ids: Tensor,
 | 
						|
        txt_list,
 | 
						|
        txt_ids_list,
 | 
						|
        timesteps: Tensor,
 | 
						|
        y_list,
 | 
						|
        img_len = 0,
 | 
						|
        guidance: Tensor | None = None,
 | 
						|
        callback= None,
 | 
						|
        pipeline =None,
 | 
						|
        siglip_embedding = None,
 | 
						|
        siglip_embedding_ids = None,
 | 
						|
    ) -> Tensor:
 | 
						|
 | 
						|
        sz = len(txt_list)        
 | 
						|
        # running on sequences img
 | 
						|
        img = self.img_in(img)
 | 
						|
        img_list = [img] if sz==1 else [img, img.clone()]
 | 
						|
        
 | 
						|
        if self.chroma:
 | 
						|
            mod_index_length = 344
 | 
						|
            distill_timestep = timestep_embedding(timesteps, 16).to(img.device, img.dtype)
 | 
						|
            guidance =  torch.tensor([0.]* distill_timestep.shape[0])
 | 
						|
            distil_guidance = timestep_embedding(guidance, 16).to(img.device, img.dtype)
 | 
						|
            modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
 | 
						|
            modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
 | 
						|
            timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
 | 
						|
            input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
 | 
						|
            mod_vectors = self.distilled_guidance_layer(input_vec)
 | 
						|
        else:
 | 
						|
            vec = self.time_in(timestep_embedding(timesteps, 256))
 | 
						|
            if self.params.guidance_embed:
 | 
						|
                if guidance is None:
 | 
						|
                    raise ValueError("Didn't get guidance strength for guidance distilled model.")
 | 
						|
                vec +=  self.guidance_in(timestep_embedding(guidance, 256))
 | 
						|
            vec_list = [ vec + self.vector_in(y) for y in y_list]
 | 
						|
 | 
						|
        img = None
 | 
						|
        txt_list = [self.txt_in(txt) for txt in txt_list ]
 | 
						|
        if siglip_embedding is not None:
 | 
						|
            txt_list = [torch.cat((siglip_embedding, txt) , dim=1) for txt in txt_list]
 | 
						|
            txt_ids_list = [torch.cat((siglip_embedding_ids, txt_id) , dim=1) for txt_id in txt_ids_list]
 | 
						|
 | 
						|
        pe_list = [self.pe_embedder(torch.cat((txt_ids, img_ids), dim=1)) for txt_ids in txt_ids_list] 
 | 
						|
 | 
						|
        for i, block in enumerate(self.double_blocks):
 | 
						|
            if self.chroma: vec_list = [( self.get_modulations(mod_vectors, "double_img", idx=i), self.get_modulations(mod_vectors, "double_txt", idx=i))] * sz
 | 
						|
            if callback != None:
 | 
						|
                callback(-1, None, False, True)
 | 
						|
            if pipeline._interrupt:
 | 
						|
                return [None] * sz
 | 
						|
            for img, txt, pe, vec in zip(img_list, txt_list, pe_list, vec_list):
 | 
						|
                img[...], txt[...] = block(img=img, txt=txt, vec=vec, pe=pe)
 | 
						|
                img = txt = pe = vec= None
 | 
						|
 | 
						|
        img_list = [torch.cat((txt, img), 1) for txt, img in zip(txt_list, img_list)]
 | 
						|
 | 
						|
        for i, block in enumerate(self.single_blocks):
 | 
						|
            if self.chroma: vec_list= [self.get_modulations(mod_vectors, "single", idx=i)] * sz
 | 
						|
            if callback != None:
 | 
						|
                callback(-1, None, False, True)
 | 
						|
            if pipeline._interrupt:
 | 
						|
                return [None] * sz
 | 
						|
            for img, pe, vec in zip(img_list, pe_list, vec_list):
 | 
						|
                img[...]= block(x=img, vec=vec, pe=pe)
 | 
						|
                img = pe = vec = None
 | 
						|
        img_list = [ img[:, txt.shape[1] : txt.shape[1] + img_len, ...] for img, txt in zip(img_list, txt_list)]
 | 
						|
 | 
						|
        if self.chroma: vec_list = [self.get_modulations(mod_vectors, "final")] * sz
 | 
						|
        out_list = []
 | 
						|
        for i, (img, vec) in enumerate(zip(img_list, vec_list)):
 | 
						|
            out_list.append( self.final_layer(img, vec)) # (N, T, patch_size ** 2 * out_channels)
 | 
						|
            img_list[i] = img = vec = None
 | 
						|
        return out_list
 | 
						|
 | 
						|
 | 
						|
class FluxLoraWrapper(Flux):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        lora_rank: int = 128,
 | 
						|
        lora_scale: float = 1.0,
 | 
						|
        *args,
 | 
						|
        **kwargs,
 | 
						|
    ) -> None:
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
 | 
						|
        self.lora_rank = lora_rank
 | 
						|
 | 
						|
        replace_linear_with_lora(
 | 
						|
            self,
 | 
						|
            max_rank=lora_rank,
 | 
						|
            scale=lora_scale,
 | 
						|
        )
 | 
						|
 | 
						|
    def set_lora_scale(self, scale: float) -> None:
 | 
						|
        for module in self.modules():
 | 
						|
            if isinstance(module, LinearLora):
 | 
						|
                module.set_scale(scale=scale)
 |