Wan2.1/models/flux/sampling.py
2025-09-11 21:23:05 +02:00

476 lines
16 KiB
Python

import math
from typing import Callable
import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image
from torch import Tensor
from .model import Flux
from .modules.autoencoder import AutoEncoder
from .modules.conditioner import HFEmbedder
from .modules.image_embedders import CannyImageEncoder, DepthImageEncoder, ReduxImageEncoder
from .util import PREFERED_KONTEXT_RESOLUTIONS
from einops import rearrange, repeat
from typing import Literal
import torchvision.transforms.functional as TVF
def get_noise(
num_samples: int,
height: int,
width: int,
device: torch.device,
dtype: torch.dtype,
seed: int,
):
return torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
dtype=dtype,
device=device,
generator=torch.Generator(device=device).manual_seed(seed),
)
def prepare_prompt(t5: HFEmbedder, clip: HFEmbedder, bs: int, prompt: str | list[str], neg: bool = False, device: str = "cuda") -> dict[str, Tensor]:
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"neg_txt" if neg else "txt": txt.to(device),
"neg_txt_ids" if neg else "txt_ids": txt_ids.to(device),
"neg_vec" if neg else "vec": vec.to(device),
}
def prepare_img( img: Tensor) -> dict[str, Tensor]:
bs, c, h, w = img.shape
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
}
def prepare_redux(
t5: HFEmbedder,
clip: HFEmbedder,
img: Tensor,
prompt: str | list[str],
encoder: ReduxImageEncoder,
img_cond_path: str,
) -> dict[str, Tensor]:
bs, _, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img_cond = Image.open(img_cond_path).convert("RGB")
with torch.no_grad():
img_cond = encoder(img_cond)
img_cond = img_cond.to(torch.bfloat16)
if img_cond.shape[0] == 1 and bs > 1:
img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
txt = torch.cat((txt, img_cond.to(txt)), dim=-2)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"vec": vec.to(img.device),
}
def prepare_kontext(
ae: AutoEncoder,
img_cond_list: list,
seed: int,
device: torch.device,
target_width: int | None = None,
target_height: int | None = None,
bs: int = 1,
img_mask = None,
) -> tuple[dict[str, Tensor], int, int]:
# load and encode the conditioning image
res_match_output = img_mask is not None
img_cond_seq = None
img_cond_seq_ids = None
if img_cond_list == None: img_cond_list = []
height_offset = 0
width_offset = 0
for cond_no, img_cond in enumerate(img_cond_list):
width, height = img_cond.size
aspect_ratio = width / height
if res_match_output:
width, height = target_width, target_height
else:
# Kontext is trained on specific resolutions, using one of them is recommended
_, width, height = min((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS)
width = 2 * int(width / 16)
height = 2 * int(height / 16)
img_cond = img_cond.resize((8 * width, 8 * height), Image.Resampling.LANCZOS)
img_cond = np.array(img_cond)
img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
img_cond = rearrange(img_cond, "h w c -> 1 c h w")
with torch.no_grad():
img_cond_latents = ae.encode(img_cond.to(device))
img_cond_latents = img_cond_latents.to(torch.bfloat16)
img_cond_latents = rearrange(img_cond_latents, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img_cond.shape[0] == 1 and bs > 1:
img_cond_latents = repeat(img_cond_latents, "1 ... -> bs ...", bs=bs)
img_cond = None
# image ids are the same as base image with the first dimension set to 1
# instead of 0
img_cond_ids = torch.zeros(height // 2, width // 2, 3)
img_cond_ids[..., 0] = 1
img_cond_ids[..., 1] = img_cond_ids[..., 1] + torch.arange(height // 2)[:, None] + height_offset
img_cond_ids[..., 2] = img_cond_ids[..., 2] + torch.arange(width // 2)[None, :] + width_offset
img_cond_ids = repeat(img_cond_ids, "h w c -> b (h w) c", b=bs)
height_offset += height // 2
width_offset += width // 2
if target_width is None:
target_width = 8 * width
if target_height is None:
target_height = 8 * height
img_cond_ids = img_cond_ids.to(device)
if cond_no == 0:
img_cond_seq, img_cond_seq_ids = img_cond_latents, img_cond_ids
else:
img_cond_seq, img_cond_seq_ids = torch.cat([img_cond_seq, img_cond_latents], dim=1), torch.cat([img_cond_seq_ids, img_cond_ids], dim=1)
return_dict = {
"img_cond_seq": img_cond_seq,
"img_cond_seq_ids": img_cond_seq_ids,
}
if img_mask is not None:
from shared.utils.utils import convert_image_to_tensor, convert_tensor_to_image
# image_height, image_width = calculate_new_dimensions(ref_height, ref_width, image_height, image_width, False, block_size=multiple_of)
image_mask_latents = convert_image_to_tensor(img_mask.resize((target_width // 16, target_height // 16), resample=Image.Resampling.LANCZOS))
image_mask_latents = torch.where(image_mask_latents>-0.5, 1., 0. )[0:1]
image_mask_rebuilt = image_mask_latents.repeat_interleave(16, dim=-1).repeat_interleave(16, dim=-2).unsqueeze(0)
convert_tensor_to_image( image_mask_rebuilt.squeeze(0).repeat(3,1,1)).save("mmm.png")
image_mask_latents = image_mask_latents.reshape(1, -1, 1).to(device)
return_dict.update({
"img_msk_latents": image_mask_latents,
"img_msk_rebuilt": image_mask_rebuilt,
})
img = get_noise(
bs,
target_height,
target_width,
device=device,
dtype=torch.bfloat16,
seed=seed,
)
return_dict.update(prepare_img(img))
return return_dict, target_height, target_width
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# estimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model: Flux,
# model input
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
vec: Tensor,
# sampling parameters
timesteps: list[float],
guidance: float = 4.0,
real_guidance_scale = None,
# extra img tokens (channel-wise)
neg_txt: Tensor = None,
neg_txt_ids: Tensor= None,
neg_vec: Tensor = None,
img_cond: Tensor | None = None,
# extra img tokens (sequence-wise)
img_cond_seq: Tensor | None = None,
img_cond_seq_ids: Tensor | None = None,
siglip_embedding = None,
siglip_embedding_ids = None,
callback=None,
pipeline=None,
loras_slists=None,
unpack_latent = None,
joint_pass= False,
img_msk_latents = None,
img_msk_rebuilt = None,
denoising_strength = 1,
):
kwargs = {'pipeline': pipeline, 'callback': callback, "img_len" : img.shape[1], "siglip_embedding": siglip_embedding, "siglip_embedding_ids": siglip_embedding_ids}
if callback != None:
callback(-1, None, True)
original_image_latents = None if img_cond_seq is None else img_cond_seq.clone()
morph, first_step = False, 0
if img_msk_latents is not None:
randn = torch.randn_like(original_image_latents)
if denoising_strength < 1.:
first_step = int(len(timesteps) * (1. - denoising_strength))
if not morph:
latent_noise_factor = timesteps[first_step]
latents = original_image_latents * (1.0 - latent_noise_factor) + randn * latent_noise_factor
img = latents.to(img)
latents = None
timesteps = timesteps[first_step:]
updated_num_steps= len(timesteps) -1
if callback != None:
from shared.utils.loras_mutipliers import update_loras_slists
update_loras_slists(model, loras_slists, updated_num_steps)
callback(-1, None, True, override_num_inference_steps = updated_num_steps)
from mmgp import offload
# this is ignored for schnell
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
offload.set_step_no_for_lora(model, first_step + i)
if pipeline._interrupt:
return None
if img_msk_latents is not None and denoising_strength <1. and i == first_step and morph:
latent_noise_factor = t_curr/1000
img = original_image_latents * (1.0 - latent_noise_factor) + img * latent_noise_factor
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
img_input = img
img_input_ids = img_ids
if img_cond is not None:
img_input = torch.cat((img, img_cond), dim=-1)
if img_cond_seq is not None:
img_input = torch.cat((img_input, img_cond_seq), dim=1)
img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1)
if not joint_pass or real_guidance_scale == 1:
pred = model(
img=img_input,
img_ids=img_input_ids,
txt_list=[txt],
txt_ids_list=[txt_ids],
y_list=[vec],
timesteps=t_vec,
guidance=guidance_vec,
**kwargs
)[0]
if pred == None: return None
if real_guidance_scale> 1:
neg_pred = model(
img=img_input,
img_ids=img_input_ids,
txt_list=[neg_txt],
txt_ids_list=[neg_txt_ids],
y_list=[neg_vec],
timesteps=t_vec,
guidance=guidance_vec,
**kwargs
)[0]
if neg_pred == None: return None
else:
pred, neg_pred = model(
img=img_input,
img_ids=img_input_ids,
txt_list=[txt, neg_txt],
txt_ids_list=[txt_ids, neg_txt_ids],
y_list=[vec, neg_vec],
timesteps=t_vec,
guidance=guidance_vec,
**kwargs
)
if pred == None: return None
if real_guidance_scale > 1:
pred = neg_pred + real_guidance_scale * (pred - neg_pred)
img += (t_prev - t_curr) * pred
if img_msk_latents is not None:
latent_noise_factor = t_prev
# noisy_image = original_image_latents * (1.0 - latent_noise_factor) + torch.randn_like(original_image_latents) * latent_noise_factor
noisy_image = original_image_latents * (1.0 - latent_noise_factor) + randn * latent_noise_factor
img = noisy_image * (1-img_msk_latents) + img_msk_latents * img
noisy_image = None
if callback is not None:
preview = unpack_latent(img).transpose(0,1)
callback(i, preview, False)
return img
def prepare_multi_ip(
ae: AutoEncoder,
img_cond_list: list,
seed: int,
device: torch.device,
target_width: int | None = None,
target_height: int | None = None,
bs: int = 1,
pe: Literal["d", "h", "w", "o"] = "d",
) -> dict[str, Tensor]:
ref_imgs = img_cond_list
assert pe in ["d", "h", "w", "o"]
ref_imgs = [
ae.encode(
(TVF.to_tensor(ref_img) * 2.0 - 1.0)
.unsqueeze(0)
.to(device, torch.float32)
).to(torch.bfloat16)
for ref_img in img_cond_list
]
img = get_noise( bs, target_height, target_width, device=device, dtype=torch.bfloat16, seed=seed)
bs, c, h, w = img.shape
# tgt img
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
img_cond_seq = img_cond_seq_ids = None
pe_shift_w, pe_shift_h = w // 2, h // 2
for cond_no, ref_img in enumerate(ref_imgs):
_, _, ref_h1, ref_w1 = ref_img.shape
ref_img = rearrange(
ref_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2
)
if ref_img.shape[0] == 1 and bs > 1:
ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs)
ref_img_ids1 = torch.zeros(ref_h1 // 2, ref_w1 // 2, 3)
# img id分别在宽高偏移各自最大值
h_offset = pe_shift_h if pe in {"d", "h"} else 0
w_offset = pe_shift_w if pe in {"d", "w"} else 0
ref_img_ids1[..., 1] = (
ref_img_ids1[..., 1] + torch.arange(ref_h1 // 2)[:, None] + h_offset
)
ref_img_ids1[..., 2] = (
ref_img_ids1[..., 2] + torch.arange(ref_w1 // 2)[None, :] + w_offset
)
ref_img_ids1 = repeat(ref_img_ids1, "h w c -> b (h w) c", b=bs)
if target_width is None:
target_width = 8 * ref_w1
if target_height is None:
target_height = 8 * ref_h1
ref_img_ids1 = ref_img_ids1.to(device)
if cond_no == 0:
img_cond_seq, img_cond_seq_ids = ref_img, ref_img_ids1
else:
img_cond_seq, img_cond_seq_ids = torch.cat([img_cond_seq, ref_img], dim=1), torch.cat([img_cond_seq_ids, ref_img_ids1], dim=1)
# 更新pe shift
pe_shift_h += ref_h1 // 2
pe_shift_w += ref_w1 // 2
return {
"img": img,
"img_ids": img_ids.to(img.device),
"img_cond_seq": img_cond_seq,
"img_cond_seq_ids": img_cond_seq_ids,
}, target_height, target_width
def unpack(x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)