mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1413 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1413 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import json
 | 
						|
import os
 | 
						|
from functools import partial
 | 
						|
from types import SimpleNamespace
 | 
						|
from typing import Any, Mapping, Optional, Tuple, Union, List
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
import torch
 | 
						|
import numpy as np
 | 
						|
from einops import rearrange
 | 
						|
from torch import nn
 | 
						|
from diffusers.utils import logging
 | 
						|
import torch.nn.functional as F
 | 
						|
from diffusers.models.embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
 | 
						|
from safetensors import safe_open
 | 
						|
 | 
						|
 | 
						|
from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd
 | 
						|
from ltx_video.models.autoencoders.pixel_norm import PixelNorm
 | 
						|
from ltx_video.models.autoencoders.pixel_shuffle import PixelShuffleND
 | 
						|
from ltx_video.models.autoencoders.vae import AutoencoderKLWrapper
 | 
						|
from ltx_video.models.transformers.attention import Attention
 | 
						|
from ltx_video.utils.diffusers_config_mapping import (
 | 
						|
    diffusers_and_ours_config_mapping,
 | 
						|
    make_hashable_key,
 | 
						|
    VAE_KEYS_RENAME_DICT,
 | 
						|
)
 | 
						|
 | 
						|
PER_CHANNEL_STATISTICS_PREFIX = "per_channel_statistics."
 | 
						|
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
 | 
						|
 | 
						|
 | 
						|
class CausalVideoAutoencoder(AutoencoderKLWrapper):
 | 
						|
    @classmethod
 | 
						|
    def from_pretrained(
 | 
						|
        cls,
 | 
						|
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
 | 
						|
        *args,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
 | 
						|
        if (
 | 
						|
            pretrained_model_name_or_path.is_dir()
 | 
						|
            and (pretrained_model_name_or_path / "autoencoder.pth").exists()
 | 
						|
        ):
 | 
						|
            config_local_path = pretrained_model_name_or_path / "config.json"
 | 
						|
            config = cls.load_config(config_local_path, **kwargs)
 | 
						|
 | 
						|
            model_local_path = pretrained_model_name_or_path / "autoencoder.pth"
 | 
						|
            state_dict = torch.load(model_local_path, map_location=torch.device("cpu"))
 | 
						|
 | 
						|
            statistics_local_path = (
 | 
						|
                pretrained_model_name_or_path / "per_channel_statistics.json"
 | 
						|
            )
 | 
						|
            if statistics_local_path.exists():
 | 
						|
                with open(statistics_local_path, "r") as file:
 | 
						|
                    data = json.load(file)
 | 
						|
                transposed_data = list(zip(*data["data"]))
 | 
						|
                data_dict = {
 | 
						|
                    col: torch.tensor(vals)
 | 
						|
                    for col, vals in zip(data["columns"], transposed_data)
 | 
						|
                }
 | 
						|
                std_of_means = data_dict["std-of-means"]
 | 
						|
                mean_of_means = data_dict.get(
 | 
						|
                    "mean-of-means", torch.zeros_like(data_dict["std-of-means"])
 | 
						|
                )
 | 
						|
                state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}std-of-means"] = (
 | 
						|
                    std_of_means
 | 
						|
                )
 | 
						|
                state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}mean-of-means"] = (
 | 
						|
                    mean_of_means
 | 
						|
                )
 | 
						|
 | 
						|
        elif pretrained_model_name_or_path.is_dir():
 | 
						|
            config_path = pretrained_model_name_or_path / "vae" / "config.json"
 | 
						|
            with open(config_path, "r") as f:
 | 
						|
                config = make_hashable_key(json.load(f))
 | 
						|
 | 
						|
            assert config in diffusers_and_ours_config_mapping, (
 | 
						|
                "Provided diffusers checkpoint config for VAE is not suppported. "
 | 
						|
                "We only support diffusers configs found in Lightricks/LTX-Video."
 | 
						|
            )
 | 
						|
 | 
						|
            config = diffusers_and_ours_config_mapping[config]
 | 
						|
 | 
						|
            state_dict_path = (
 | 
						|
                pretrained_model_name_or_path
 | 
						|
                / "vae"
 | 
						|
                / "diffusion_pytorch_model.safetensors"
 | 
						|
            )
 | 
						|
 | 
						|
            state_dict = {}
 | 
						|
            with safe_open(state_dict_path, framework="pt", device="cpu") as f:
 | 
						|
                for k in f.keys():
 | 
						|
                    state_dict[k] = f.get_tensor(k)
 | 
						|
            for key in list(state_dict.keys()):
 | 
						|
                new_key = key
 | 
						|
                for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
 | 
						|
                    new_key = new_key.replace(replace_key, rename_key)
 | 
						|
 | 
						|
                state_dict[new_key] = state_dict.pop(key)
 | 
						|
 | 
						|
        elif pretrained_model_name_or_path.is_file() and str(
 | 
						|
            pretrained_model_name_or_path
 | 
						|
        ).endswith(".safetensors"):
 | 
						|
            state_dict = {}
 | 
						|
            with safe_open(
 | 
						|
                pretrained_model_name_or_path, framework="pt", device="cpu"
 | 
						|
            ) as f:
 | 
						|
                metadata = f.metadata()
 | 
						|
                for k in f.keys():
 | 
						|
                    state_dict[k] = f.get_tensor(k)
 | 
						|
            configs = json.loads(metadata["config"])
 | 
						|
            config = configs["vae"]
 | 
						|
 | 
						|
        video_vae = cls.from_config(config)
 | 
						|
        if "torch_dtype" in kwargs:
 | 
						|
            video_vae.to(kwargs["torch_dtype"])
 | 
						|
        video_vae.load_state_dict(state_dict)
 | 
						|
        return video_vae
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def from_config(config):
 | 
						|
        assert (
 | 
						|
            config["_class_name"] == "CausalVideoAutoencoder"
 | 
						|
        ), "config must have _class_name=CausalVideoAutoencoder"
 | 
						|
        if isinstance(config["dims"], list):
 | 
						|
            config["dims"] = tuple(config["dims"])
 | 
						|
 | 
						|
        assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)"
 | 
						|
 | 
						|
        double_z = config.get("double_z", True)
 | 
						|
        latent_log_var = config.get(
 | 
						|
            "latent_log_var", "per_channel" if double_z else "none"
 | 
						|
        )
 | 
						|
        use_quant_conv = config.get("use_quant_conv", True)
 | 
						|
        normalize_latent_channels = config.get("normalize_latent_channels", False)
 | 
						|
 | 
						|
        if use_quant_conv and latent_log_var in ["uniform", "constant"]:
 | 
						|
            raise ValueError(
 | 
						|
                f"latent_log_var={latent_log_var} requires use_quant_conv=False"
 | 
						|
            )
 | 
						|
 | 
						|
        encoder = Encoder(
 | 
						|
            dims=config["dims"],
 | 
						|
            in_channels=config.get("in_channels", 3),
 | 
						|
            out_channels=config["latent_channels"],
 | 
						|
            blocks=config.get("encoder_blocks", config.get("blocks")),
 | 
						|
            patch_size=config.get("patch_size", 1),
 | 
						|
            latent_log_var=latent_log_var,
 | 
						|
            norm_layer=config.get("norm_layer", "group_norm"),
 | 
						|
            base_channels=config.get("encoder_base_channels", 128),
 | 
						|
            spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
 | 
						|
        )
 | 
						|
 | 
						|
        decoder = Decoder(
 | 
						|
            dims=config["dims"],
 | 
						|
            in_channels=config["latent_channels"],
 | 
						|
            out_channels=config.get("out_channels", 3),
 | 
						|
            blocks=config.get("decoder_blocks", config.get("blocks")),
 | 
						|
            patch_size=config.get("patch_size", 1),
 | 
						|
            norm_layer=config.get("norm_layer", "group_norm"),
 | 
						|
            causal=config.get("causal_decoder", False),
 | 
						|
            timestep_conditioning=config.get("timestep_conditioning", False),
 | 
						|
            base_channels=config.get("decoder_base_channels", 128),
 | 
						|
            spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
 | 
						|
        )
 | 
						|
 | 
						|
        dims = config["dims"]
 | 
						|
        return CausalVideoAutoencoder(
 | 
						|
            encoder=encoder,
 | 
						|
            decoder=decoder,
 | 
						|
            latent_channels=config["latent_channels"],
 | 
						|
            dims=dims,
 | 
						|
            use_quant_conv=use_quant_conv,
 | 
						|
            normalize_latent_channels=normalize_latent_channels,
 | 
						|
        )
 | 
						|
 | 
						|
    @property
 | 
						|
    def config(self):
 | 
						|
        return SimpleNamespace(
 | 
						|
            _class_name="CausalVideoAutoencoder",
 | 
						|
            dims=self.dims,
 | 
						|
            in_channels=self.encoder.conv_in.in_channels // self.encoder.patch_size**2,
 | 
						|
            out_channels=self.decoder.conv_out.out_channels
 | 
						|
            // self.decoder.patch_size**2,
 | 
						|
            latent_channels=self.decoder.conv_in.in_channels,
 | 
						|
            encoder_blocks=self.encoder.blocks_desc,
 | 
						|
            decoder_blocks=self.decoder.blocks_desc,
 | 
						|
            scaling_factor=1.0,
 | 
						|
            norm_layer=self.encoder.norm_layer,
 | 
						|
            patch_size=self.encoder.patch_size,
 | 
						|
            latent_log_var=self.encoder.latent_log_var,
 | 
						|
            use_quant_conv=self.use_quant_conv,
 | 
						|
            causal_decoder=self.decoder.causal,
 | 
						|
            timestep_conditioning=self.decoder.timestep_conditioning,
 | 
						|
            normalize_latent_channels=self.normalize_latent_channels,
 | 
						|
        )
 | 
						|
 | 
						|
    @property
 | 
						|
    def is_video_supported(self):
 | 
						|
        """
 | 
						|
        Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images.
 | 
						|
        """
 | 
						|
        return self.dims != 2
 | 
						|
 | 
						|
    @property
 | 
						|
    def spatial_downscale_factor(self):
 | 
						|
        return (
 | 
						|
            2
 | 
						|
            ** len(
 | 
						|
                [
 | 
						|
                    block
 | 
						|
                    for block in self.encoder.blocks_desc
 | 
						|
                    if block[0]
 | 
						|
                    in [
 | 
						|
                        "compress_space",
 | 
						|
                        "compress_all",
 | 
						|
                        "compress_all_res",
 | 
						|
                        "compress_space_res",
 | 
						|
                    ]
 | 
						|
                ]
 | 
						|
            )
 | 
						|
            * self.encoder.patch_size
 | 
						|
        )
 | 
						|
 | 
						|
    @property
 | 
						|
    def temporal_downscale_factor(self):
 | 
						|
        return 2 ** len(
 | 
						|
            [
 | 
						|
                block
 | 
						|
                for block in self.encoder.blocks_desc
 | 
						|
                if block[0]
 | 
						|
                in [
 | 
						|
                    "compress_time",
 | 
						|
                    "compress_all",
 | 
						|
                    "compress_all_res",
 | 
						|
                    "compress_space_res",
 | 
						|
                ]
 | 
						|
            ]
 | 
						|
        )
 | 
						|
 | 
						|
    def to_json_string(self) -> str:
 | 
						|
        import json
 | 
						|
 | 
						|
        return json.dumps(self.config.__dict__)
 | 
						|
 | 
						|
    def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True, assign = True):
 | 
						|
        if any([key.startswith("vae.") for key in state_dict.keys()]):
 | 
						|
            state_dict = {
 | 
						|
                key.replace("vae.", ""): value
 | 
						|
                for key, value in state_dict.items()
 | 
						|
                if key.startswith("vae.")
 | 
						|
            }
 | 
						|
 | 
						|
 | 
						|
        stats_keys_to_keep = ["per_channel_statistics.std-of-means", "per_channel_statistics.mean-of-means"]
 | 
						|
        ckpt_state_dict = {
 | 
						|
            key: value
 | 
						|
            for key, value in state_dict.items()
 | 
						|
            if not key.startswith(PER_CHANNEL_STATISTICS_PREFIX) or key in stats_keys_to_keep
 | 
						|
        }
 | 
						|
 | 
						|
        model_keys = set(name for name, _ in self.named_modules())
 | 
						|
 | 
						|
        key_mapping = {
 | 
						|
            ".resnets.": ".res_blocks.",
 | 
						|
            "downsamplers.0": "downsample",
 | 
						|
            "upsamplers.0": "upsample",
 | 
						|
        }
 | 
						|
        converted_state_dict = {}
 | 
						|
        for key, value in ckpt_state_dict.items():
 | 
						|
            for k, v in key_mapping.items():
 | 
						|
                key = key.replace(k, v)
 | 
						|
 | 
						|
            key_prefix = ".".join(key.split(".")[:-1])
 | 
						|
            if "norm" in key and key_prefix not in model_keys:
 | 
						|
                logger.info(
 | 
						|
                    f"Removing key {key} from state_dict as it is not present in the model"
 | 
						|
                )
 | 
						|
                continue
 | 
						|
 | 
						|
            converted_state_dict[key] = value
 | 
						|
 | 
						|
        # data_dict = {
 | 
						|
        #     key.removeprefix(PER_CHANNEL_STATISTICS_PREFIX): value
 | 
						|
        #     for key, value in state_dict.items()
 | 
						|
        #     if key in stats_keys_to_keep
 | 
						|
        # }
 | 
						|
        for key in stats_keys_to_keep:
 | 
						|
            if key in converted_state_dict: # happens only in the original vae sd 
 | 
						|
                v = converted_state_dict.pop(key)
 | 
						|
                converted_state_dict[key.removeprefix(PER_CHANNEL_STATISTICS_PREFIX).replace("-", "_")] = v
 | 
						|
 | 
						|
        a,b = super().load_state_dict(converted_state_dict, strict=strict, assign=assign)
 | 
						|
 | 
						|
        # if len(data_dict) > 0:
 | 
						|
        #     self.register_buffer("std_of_means", data_dict["std-of-means"],)
 | 
						|
        #     self.register_buffer(
 | 
						|
        #         "mean_of_means",
 | 
						|
        #         data_dict.get(
 | 
						|
        #             "mean-of-means", torch.zeros_like(data_dict["std-of-means"])
 | 
						|
        #         ),
 | 
						|
        #     )
 | 
						|
        return a, b
 | 
						|
 | 
						|
    def last_layer(self):
 | 
						|
        if hasattr(self.decoder, "conv_out"):
 | 
						|
            if isinstance(self.decoder.conv_out, nn.Sequential):
 | 
						|
                last_layer = self.decoder.conv_out[-1]
 | 
						|
            else:
 | 
						|
                last_layer = self.decoder.conv_out
 | 
						|
        else:
 | 
						|
            last_layer = self.decoder.layers[-1]
 | 
						|
        return last_layer
 | 
						|
 | 
						|
    def set_use_tpu_flash_attention(self):
 | 
						|
        for block in self.decoder.up_blocks:
 | 
						|
            if isinstance(block, UNetMidBlock3D) and block.attention_blocks:
 | 
						|
                for attention_block in block.attention_blocks:
 | 
						|
                    attention_block.set_use_tpu_flash_attention()
 | 
						|
 | 
						|
 | 
						|
class Encoder(nn.Module):
 | 
						|
    r"""
 | 
						|
    The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
 | 
						|
 | 
						|
    Args:
 | 
						|
        dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
 | 
						|
            The number of dimensions to use in convolutions.
 | 
						|
        in_channels (`int`, *optional*, defaults to 3):
 | 
						|
            The number of input channels.
 | 
						|
        out_channels (`int`, *optional*, defaults to 3):
 | 
						|
            The number of output channels.
 | 
						|
        blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
 | 
						|
            The blocks to use. Each block is a tuple of the block name and the number of layers.
 | 
						|
        base_channels (`int`, *optional*, defaults to 128):
 | 
						|
            The number of output channels for the first convolutional layer.
 | 
						|
        norm_num_groups (`int`, *optional*, defaults to 32):
 | 
						|
            The number of groups for normalization.
 | 
						|
        patch_size (`int`, *optional*, defaults to 1):
 | 
						|
            The patch size to use. Should be a power of 2.
 | 
						|
        norm_layer (`str`, *optional*, defaults to `group_norm`):
 | 
						|
            The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
 | 
						|
        latent_log_var (`str`, *optional*, defaults to `per_channel`):
 | 
						|
            The number of channels for the log variance. Can be either `per_channel`, `uniform`, `constant` or `none`.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        dims: Union[int, Tuple[int, int]] = 3,
 | 
						|
        in_channels: int = 3,
 | 
						|
        out_channels: int = 3,
 | 
						|
        blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
 | 
						|
        base_channels: int = 128,
 | 
						|
        norm_num_groups: int = 32,
 | 
						|
        patch_size: Union[int, Tuple[int]] = 1,
 | 
						|
        norm_layer: str = "group_norm",  # group_norm, pixel_norm
 | 
						|
        latent_log_var: str = "per_channel",
 | 
						|
        spatial_padding_mode: str = "zeros",
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
        self.patch_size = patch_size
 | 
						|
        self.norm_layer = norm_layer
 | 
						|
        self.latent_channels = out_channels
 | 
						|
        self.latent_log_var = latent_log_var
 | 
						|
        self.blocks_desc = blocks
 | 
						|
 | 
						|
        in_channels = in_channels * patch_size**2
 | 
						|
        output_channel = base_channels
 | 
						|
 | 
						|
        self.conv_in = make_conv_nd(
 | 
						|
            dims=dims,
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=output_channel,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            padding=1,
 | 
						|
            causal=True,
 | 
						|
            spatial_padding_mode=spatial_padding_mode,
 | 
						|
        )
 | 
						|
 | 
						|
        self.down_blocks = nn.ModuleList([])
 | 
						|
 | 
						|
        for block_name, block_params in blocks:
 | 
						|
            input_channel = output_channel
 | 
						|
            if isinstance(block_params, int):
 | 
						|
                block_params = {"num_layers": block_params}
 | 
						|
 | 
						|
            if block_name == "res_x":
 | 
						|
                block = UNetMidBlock3D(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    num_layers=block_params["num_layers"],
 | 
						|
                    resnet_eps=1e-6,
 | 
						|
                    resnet_groups=norm_num_groups,
 | 
						|
                    norm_layer=norm_layer,
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "res_x_y":
 | 
						|
                output_channel = block_params.get("multiplier", 2) * output_channel
 | 
						|
                block = ResnetBlock3D(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    out_channels=output_channel,
 | 
						|
                    eps=1e-6,
 | 
						|
                    groups=norm_num_groups,
 | 
						|
                    norm_layer=norm_layer,
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_time":
 | 
						|
                block = make_conv_nd(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    out_channels=output_channel,
 | 
						|
                    kernel_size=3,
 | 
						|
                    stride=(2, 1, 1),
 | 
						|
                    causal=True,
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_space":
 | 
						|
                block = make_conv_nd(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    out_channels=output_channel,
 | 
						|
                    kernel_size=3,
 | 
						|
                    stride=(1, 2, 2),
 | 
						|
                    causal=True,
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_all":
 | 
						|
                block = make_conv_nd(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    out_channels=output_channel,
 | 
						|
                    kernel_size=3,
 | 
						|
                    stride=(2, 2, 2),
 | 
						|
                    causal=True,
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_all_x_y":
 | 
						|
                output_channel = block_params.get("multiplier", 2) * output_channel
 | 
						|
                block = make_conv_nd(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    out_channels=output_channel,
 | 
						|
                    kernel_size=3,
 | 
						|
                    stride=(2, 2, 2),
 | 
						|
                    causal=True,
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_all_res":
 | 
						|
                output_channel = block_params.get("multiplier", 2) * output_channel
 | 
						|
                block = SpaceToDepthDownsample(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    out_channels=output_channel,
 | 
						|
                    stride=(2, 2, 2),
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_space_res":
 | 
						|
                output_channel = block_params.get("multiplier", 2) * output_channel
 | 
						|
                block = SpaceToDepthDownsample(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    out_channels=output_channel,
 | 
						|
                    stride=(1, 2, 2),
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_time_res":
 | 
						|
                output_channel = block_params.get("multiplier", 2) * output_channel
 | 
						|
                block = SpaceToDepthDownsample(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    out_channels=output_channel,
 | 
						|
                    stride=(2, 1, 1),
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                raise ValueError(f"unknown block: {block_name}")
 | 
						|
 | 
						|
            self.down_blocks.append(block)
 | 
						|
 | 
						|
        # out
 | 
						|
        if norm_layer == "group_norm":
 | 
						|
            self.conv_norm_out = nn.GroupNorm(
 | 
						|
                num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
 | 
						|
            )
 | 
						|
        elif norm_layer == "pixel_norm":
 | 
						|
            self.conv_norm_out = PixelNorm()
 | 
						|
        elif norm_layer == "layer_norm":
 | 
						|
            self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
 | 
						|
 | 
						|
        self.conv_act = nn.SiLU()
 | 
						|
 | 
						|
        conv_out_channels = out_channels
 | 
						|
        if latent_log_var == "per_channel":
 | 
						|
            conv_out_channels *= 2
 | 
						|
        elif latent_log_var == "uniform":
 | 
						|
            conv_out_channels += 1
 | 
						|
        elif latent_log_var == "constant":
 | 
						|
            conv_out_channels += 1
 | 
						|
        elif latent_log_var != "none":
 | 
						|
            raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
 | 
						|
        self.conv_out = make_conv_nd(
 | 
						|
            dims,
 | 
						|
            output_channel,
 | 
						|
            conv_out_channels,
 | 
						|
            3,
 | 
						|
            padding=1,
 | 
						|
            causal=True,
 | 
						|
            spatial_padding_mode=spatial_padding_mode,
 | 
						|
        )
 | 
						|
 | 
						|
        self.gradient_checkpointing = False
 | 
						|
 | 
						|
    def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
 | 
						|
        r"""The forward method of the `Encoder` class."""
 | 
						|
 | 
						|
        sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
 | 
						|
        sample = self.conv_in(sample)
 | 
						|
 | 
						|
        checkpoint_fn = (
 | 
						|
            partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
 | 
						|
            if self.gradient_checkpointing and self.training
 | 
						|
            else lambda x: x
 | 
						|
        )
 | 
						|
 | 
						|
        for down_block in self.down_blocks:
 | 
						|
            sample = checkpoint_fn(down_block)(sample)
 | 
						|
 | 
						|
        sample = self.conv_norm_out(sample)
 | 
						|
        sample = self.conv_act(sample)
 | 
						|
        sample = self.conv_out(sample)
 | 
						|
 | 
						|
        if self.latent_log_var == "uniform":
 | 
						|
            last_channel = sample[:, -1:, ...]
 | 
						|
            num_dims = sample.dim()
 | 
						|
 | 
						|
            if num_dims == 4:
 | 
						|
                # For shape (B, C, H, W)
 | 
						|
                repeated_last_channel = last_channel.repeat(
 | 
						|
                    1, sample.shape[1] - 2, 1, 1
 | 
						|
                )
 | 
						|
                sample = torch.cat([sample, repeated_last_channel], dim=1)
 | 
						|
            elif num_dims == 5:
 | 
						|
                # For shape (B, C, F, H, W)
 | 
						|
                repeated_last_channel = last_channel.repeat(
 | 
						|
                    1, sample.shape[1] - 2, 1, 1, 1
 | 
						|
                )
 | 
						|
                sample = torch.cat([sample, repeated_last_channel], dim=1)
 | 
						|
            else:
 | 
						|
                raise ValueError(f"Invalid input shape: {sample.shape}")
 | 
						|
        elif self.latent_log_var == "constant":
 | 
						|
            sample = sample[:, :-1, ...]
 | 
						|
            approx_ln_0 = (
 | 
						|
                -30
 | 
						|
            )  # this is the minimal clamp value in DiagonalGaussianDistribution objects
 | 
						|
            sample = torch.cat(
 | 
						|
                [sample, torch.ones_like(sample, device=sample.device) * approx_ln_0],
 | 
						|
                dim=1,
 | 
						|
            )
 | 
						|
 | 
						|
        return sample
 | 
						|
 | 
						|
 | 
						|
class Decoder(nn.Module):
 | 
						|
    r"""
 | 
						|
    The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
 | 
						|
 | 
						|
    Args:
 | 
						|
        dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
 | 
						|
            The number of dimensions to use in convolutions.
 | 
						|
        in_channels (`int`, *optional*, defaults to 3):
 | 
						|
            The number of input channels.
 | 
						|
        out_channels (`int`, *optional*, defaults to 3):
 | 
						|
            The number of output channels.
 | 
						|
        blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
 | 
						|
            The blocks to use. Each block is a tuple of the block name and the number of layers.
 | 
						|
        base_channels (`int`, *optional*, defaults to 128):
 | 
						|
            The number of output channels for the first convolutional layer.
 | 
						|
        norm_num_groups (`int`, *optional*, defaults to 32):
 | 
						|
            The number of groups for normalization.
 | 
						|
        patch_size (`int`, *optional*, defaults to 1):
 | 
						|
            The patch size to use. Should be a power of 2.
 | 
						|
        norm_layer (`str`, *optional*, defaults to `group_norm`):
 | 
						|
            The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
 | 
						|
        causal (`bool`, *optional*, defaults to `True`):
 | 
						|
            Whether to use causal convolutions or not.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        dims,
 | 
						|
        in_channels: int = 3,
 | 
						|
        out_channels: int = 3,
 | 
						|
        blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
 | 
						|
        base_channels: int = 128,
 | 
						|
        layers_per_block: int = 2,
 | 
						|
        norm_num_groups: int = 32,
 | 
						|
        patch_size: int = 1,
 | 
						|
        norm_layer: str = "group_norm",
 | 
						|
        causal: bool = True,
 | 
						|
        timestep_conditioning: bool = False,
 | 
						|
        spatial_padding_mode: str = "zeros",
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
        self.patch_size = patch_size
 | 
						|
        self.layers_per_block = layers_per_block
 | 
						|
        out_channels = out_channels * patch_size**2
 | 
						|
        self.causal = causal
 | 
						|
        self.blocks_desc = blocks
 | 
						|
 | 
						|
        # Compute output channel to be product of all channel-multiplier blocks
 | 
						|
        output_channel = base_channels
 | 
						|
        for block_name, block_params in list(reversed(blocks)):
 | 
						|
            block_params = block_params if isinstance(block_params, dict) else {}
 | 
						|
            if block_name == "res_x_y":
 | 
						|
                output_channel = output_channel * block_params.get("multiplier", 2)
 | 
						|
            if block_name == "compress_all":
 | 
						|
                output_channel = output_channel * block_params.get("multiplier", 1)
 | 
						|
 | 
						|
        self.conv_in = make_conv_nd(
 | 
						|
            dims,
 | 
						|
            in_channels,
 | 
						|
            output_channel,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            padding=1,
 | 
						|
            causal=True,
 | 
						|
            spatial_padding_mode=spatial_padding_mode,
 | 
						|
        )
 | 
						|
 | 
						|
        self.up_blocks = nn.ModuleList([])
 | 
						|
 | 
						|
        for block_name, block_params in list(reversed(blocks)):
 | 
						|
            input_channel = output_channel
 | 
						|
            if isinstance(block_params, int):
 | 
						|
                block_params = {"num_layers": block_params}
 | 
						|
 | 
						|
            if block_name == "res_x":
 | 
						|
                block = UNetMidBlock3D(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    num_layers=block_params["num_layers"],
 | 
						|
                    resnet_eps=1e-6,
 | 
						|
                    resnet_groups=norm_num_groups,
 | 
						|
                    norm_layer=norm_layer,
 | 
						|
                    inject_noise=block_params.get("inject_noise", False),
 | 
						|
                    timestep_conditioning=timestep_conditioning,
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "attn_res_x":
 | 
						|
                block = UNetMidBlock3D(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    num_layers=block_params["num_layers"],
 | 
						|
                    resnet_groups=norm_num_groups,
 | 
						|
                    norm_layer=norm_layer,
 | 
						|
                    inject_noise=block_params.get("inject_noise", False),
 | 
						|
                    timestep_conditioning=timestep_conditioning,
 | 
						|
                    attention_head_dim=block_params["attention_head_dim"],
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "res_x_y":
 | 
						|
                output_channel = output_channel // block_params.get("multiplier", 2)
 | 
						|
                block = ResnetBlock3D(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    out_channels=output_channel,
 | 
						|
                    eps=1e-6,
 | 
						|
                    groups=norm_num_groups,
 | 
						|
                    norm_layer=norm_layer,
 | 
						|
                    inject_noise=block_params.get("inject_noise", False),
 | 
						|
                    timestep_conditioning=False,
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_time":
 | 
						|
                block = DepthToSpaceUpsample(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    stride=(2, 1, 1),
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_space":
 | 
						|
                block = DepthToSpaceUpsample(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    stride=(1, 2, 2),
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            elif block_name == "compress_all":
 | 
						|
                output_channel = output_channel // block_params.get("multiplier", 1)
 | 
						|
                block = DepthToSpaceUpsample(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=input_channel,
 | 
						|
                    stride=(2, 2, 2),
 | 
						|
                    residual=block_params.get("residual", False),
 | 
						|
                    out_channels_reduction_factor=block_params.get("multiplier", 1),
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                raise ValueError(f"unknown layer: {block_name}")
 | 
						|
 | 
						|
            self.up_blocks.append(block)
 | 
						|
 | 
						|
        if norm_layer == "group_norm":
 | 
						|
            self.conv_norm_out = nn.GroupNorm(
 | 
						|
                num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
 | 
						|
            )
 | 
						|
        elif norm_layer == "pixel_norm":
 | 
						|
            self.conv_norm_out = PixelNorm()
 | 
						|
        elif norm_layer == "layer_norm":
 | 
						|
            self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
 | 
						|
 | 
						|
        self.conv_act = nn.SiLU()
 | 
						|
        self.conv_out = make_conv_nd(
 | 
						|
            dims,
 | 
						|
            output_channel,
 | 
						|
            out_channels,
 | 
						|
            3,
 | 
						|
            padding=1,
 | 
						|
            causal=True,
 | 
						|
            spatial_padding_mode=spatial_padding_mode,
 | 
						|
        )
 | 
						|
 | 
						|
        self.gradient_checkpointing = False
 | 
						|
 | 
						|
        self.timestep_conditioning = timestep_conditioning
 | 
						|
 | 
						|
        if timestep_conditioning:
 | 
						|
            self.timestep_scale_multiplier = nn.Parameter(
 | 
						|
                torch.tensor(1000.0, dtype=torch.float32)
 | 
						|
            )
 | 
						|
            self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
 | 
						|
                output_channel * 2, 0
 | 
						|
            )
 | 
						|
            self.last_scale_shift_table = nn.Parameter(
 | 
						|
                torch.randn(2, output_channel) / output_channel**0.5
 | 
						|
            )
 | 
						|
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        sample: torch.FloatTensor,
 | 
						|
        target_shape,
 | 
						|
        timestep: Optional[torch.Tensor] = None,
 | 
						|
    ) -> torch.FloatTensor:
 | 
						|
        r"""The forward method of the `Decoder` class."""
 | 
						|
        assert target_shape is not None, "target_shape must be provided"
 | 
						|
        batch_size = sample.shape[0]
 | 
						|
 | 
						|
        sample = self.conv_in(sample, causal=self.causal)
 | 
						|
 | 
						|
        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
 | 
						|
 | 
						|
        checkpoint_fn = (
 | 
						|
            partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
 | 
						|
            if self.gradient_checkpointing and self.training
 | 
						|
            else lambda x: x
 | 
						|
        )
 | 
						|
 | 
						|
        sample = sample.to(upscale_dtype)
 | 
						|
 | 
						|
        if self.timestep_conditioning:
 | 
						|
            assert (
 | 
						|
                timestep is not None
 | 
						|
            ), "should pass timestep with timestep_conditioning=True"
 | 
						|
            scaled_timestep = timestep * self.timestep_scale_multiplier
 | 
						|
 | 
						|
        for up_block in self.up_blocks:
 | 
						|
            if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
 | 
						|
                sample = checkpoint_fn(up_block)(
 | 
						|
                    sample, causal=self.causal, timestep=scaled_timestep
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                sample = checkpoint_fn(up_block)(sample, causal=self.causal)
 | 
						|
 | 
						|
        sample = self.conv_norm_out(sample)
 | 
						|
 | 
						|
        if self.timestep_conditioning:
 | 
						|
            embedded_timestep = self.last_time_embedder(
 | 
						|
                timestep=scaled_timestep.flatten(),
 | 
						|
                resolution=None,
 | 
						|
                aspect_ratio=None,
 | 
						|
                batch_size=sample.shape[0],
 | 
						|
                hidden_dtype=sample.dtype,
 | 
						|
            )
 | 
						|
            embedded_timestep = embedded_timestep.view(
 | 
						|
                batch_size, embedded_timestep.shape[-1], 1, 1, 1
 | 
						|
            )
 | 
						|
            ada_values = self.last_scale_shift_table[
 | 
						|
                None, ..., None, None, None
 | 
						|
            ] + embedded_timestep.reshape(
 | 
						|
                batch_size,
 | 
						|
                2,
 | 
						|
                -1,
 | 
						|
                embedded_timestep.shape[-3],
 | 
						|
                embedded_timestep.shape[-2],
 | 
						|
                embedded_timestep.shape[-1],
 | 
						|
            )
 | 
						|
            shift, scale = ada_values.unbind(dim=1)
 | 
						|
            sample = sample * (1 + scale) + shift
 | 
						|
 | 
						|
        sample = self.conv_act(sample)
 | 
						|
        sample = self.conv_out(sample, causal=self.causal)
 | 
						|
 | 
						|
        sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
 | 
						|
 | 
						|
        return sample
 | 
						|
 | 
						|
 | 
						|
class UNetMidBlock3D(nn.Module):
 | 
						|
    """
 | 
						|
    A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
 | 
						|
 | 
						|
    Args:
 | 
						|
        in_channels (`int`): The number of input channels.
 | 
						|
        dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
 | 
						|
        num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
 | 
						|
        resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
 | 
						|
        resnet_groups (`int`, *optional*, defaults to 32):
 | 
						|
            The number of groups to use in the group normalization layers of the resnet blocks.
 | 
						|
        norm_layer (`str`, *optional*, defaults to `group_norm`):
 | 
						|
            The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
 | 
						|
        inject_noise (`bool`, *optional*, defaults to `False`):
 | 
						|
            Whether to inject noise into the hidden states.
 | 
						|
        timestep_conditioning (`bool`, *optional*, defaults to `False`):
 | 
						|
            Whether to condition the hidden states on the timestep.
 | 
						|
        attention_head_dim (`int`, *optional*, defaults to -1):
 | 
						|
            The dimension of the attention head. If -1, no attention is used.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
 | 
						|
        in_channels, height, width)`.
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        dims: Union[int, Tuple[int, int]],
 | 
						|
        in_channels: int,
 | 
						|
        dropout: float = 0.0,
 | 
						|
        num_layers: int = 1,
 | 
						|
        resnet_eps: float = 1e-6,
 | 
						|
        resnet_groups: int = 32,
 | 
						|
        norm_layer: str = "group_norm",
 | 
						|
        inject_noise: bool = False,
 | 
						|
        timestep_conditioning: bool = False,
 | 
						|
        attention_head_dim: int = -1,
 | 
						|
        spatial_padding_mode: str = "zeros",
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
        resnet_groups = (
 | 
						|
            resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
 | 
						|
        )
 | 
						|
        self.timestep_conditioning = timestep_conditioning
 | 
						|
 | 
						|
        if timestep_conditioning:
 | 
						|
            self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
 | 
						|
                in_channels * 4, 0
 | 
						|
            )
 | 
						|
 | 
						|
        self.res_blocks = nn.ModuleList(
 | 
						|
            [
 | 
						|
                ResnetBlock3D(
 | 
						|
                    dims=dims,
 | 
						|
                    in_channels=in_channels,
 | 
						|
                    out_channels=in_channels,
 | 
						|
                    eps=resnet_eps,
 | 
						|
                    groups=resnet_groups,
 | 
						|
                    dropout=dropout,
 | 
						|
                    norm_layer=norm_layer,
 | 
						|
                    inject_noise=inject_noise,
 | 
						|
                    timestep_conditioning=timestep_conditioning,
 | 
						|
                    spatial_padding_mode=spatial_padding_mode,
 | 
						|
                )
 | 
						|
                for _ in range(num_layers)
 | 
						|
            ]
 | 
						|
        )
 | 
						|
 | 
						|
        self.attention_blocks = None
 | 
						|
 | 
						|
        if attention_head_dim > 0:
 | 
						|
            if attention_head_dim > in_channels:
 | 
						|
                raise ValueError(
 | 
						|
                    "attention_head_dim must be less than or equal to in_channels"
 | 
						|
                )
 | 
						|
 | 
						|
            self.attention_blocks = nn.ModuleList(
 | 
						|
                [
 | 
						|
                    Attention(
 | 
						|
                        query_dim=in_channels,
 | 
						|
                        heads=in_channels // attention_head_dim,
 | 
						|
                        dim_head=attention_head_dim,
 | 
						|
                        bias=True,
 | 
						|
                        out_bias=True,
 | 
						|
                        qk_norm="rms_norm",
 | 
						|
                        residual_connection=True,
 | 
						|
                    )
 | 
						|
                    for _ in range(num_layers)
 | 
						|
                ]
 | 
						|
            )
 | 
						|
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        hidden_states: torch.FloatTensor,
 | 
						|
        causal: bool = True,
 | 
						|
        timestep: Optional[torch.Tensor] = None,
 | 
						|
    ) -> torch.FloatTensor:
 | 
						|
        timestep_embed = None
 | 
						|
        if self.timestep_conditioning:
 | 
						|
            assert (
 | 
						|
                timestep is not None
 | 
						|
            ), "should pass timestep with timestep_conditioning=True"
 | 
						|
            batch_size = hidden_states.shape[0]
 | 
						|
            timestep_embed = self.time_embedder(
 | 
						|
                timestep=timestep.flatten(),
 | 
						|
                resolution=None,
 | 
						|
                aspect_ratio=None,
 | 
						|
                batch_size=batch_size,
 | 
						|
                hidden_dtype=hidden_states.dtype,
 | 
						|
            )
 | 
						|
            timestep_embed = timestep_embed.view(
 | 
						|
                batch_size, timestep_embed.shape[-1], 1, 1, 1
 | 
						|
            )
 | 
						|
 | 
						|
        if self.attention_blocks:
 | 
						|
            for resnet, attention in zip(self.res_blocks, self.attention_blocks):
 | 
						|
                hidden_states = resnet(
 | 
						|
                    hidden_states, causal=causal, timestep=timestep_embed
 | 
						|
                )
 | 
						|
 | 
						|
                # Reshape the hidden states to be (batch_size, frames * height * width, channel)
 | 
						|
                batch_size, channel, frames, height, width = hidden_states.shape
 | 
						|
                hidden_states = hidden_states.view(
 | 
						|
                    batch_size, channel, frames * height * width
 | 
						|
                ).transpose(1, 2)
 | 
						|
 | 
						|
                if attention.use_tpu_flash_attention:
 | 
						|
                    # Pad the second dimension to be divisible by block_k_major (block in flash attention)
 | 
						|
                    seq_len = hidden_states.shape[1]
 | 
						|
                    block_k_major = 512
 | 
						|
                    pad_len = (block_k_major - seq_len % block_k_major) % block_k_major
 | 
						|
                    if pad_len > 0:
 | 
						|
                        hidden_states = F.pad(
 | 
						|
                            hidden_states, (0, 0, 0, pad_len), "constant", 0
 | 
						|
                        )
 | 
						|
 | 
						|
                    # Create a mask with ones for the original sequence length and zeros for the padded indexes
 | 
						|
                    mask = torch.ones(
 | 
						|
                        (hidden_states.shape[0], seq_len),
 | 
						|
                        device=hidden_states.device,
 | 
						|
                        dtype=hidden_states.dtype,
 | 
						|
                    )
 | 
						|
                    if pad_len > 0:
 | 
						|
                        mask = F.pad(mask, (0, pad_len), "constant", 0)
 | 
						|
 | 
						|
                hidden_states = attention(
 | 
						|
                    hidden_states,
 | 
						|
                    attention_mask=(
 | 
						|
                        None if not attention.use_tpu_flash_attention else mask
 | 
						|
                    ),
 | 
						|
                )
 | 
						|
 | 
						|
                if attention.use_tpu_flash_attention:
 | 
						|
                    # Remove the padding
 | 
						|
                    if pad_len > 0:
 | 
						|
                        hidden_states = hidden_states[:, :-pad_len, :]
 | 
						|
 | 
						|
                # Reshape the hidden states back to (batch_size, channel, frames, height, width, channel)
 | 
						|
                hidden_states = hidden_states.transpose(-1, -2).reshape(
 | 
						|
                    batch_size, channel, frames, height, width
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            for resnet in self.res_blocks:
 | 
						|
                hidden_states = resnet(
 | 
						|
                    hidden_states, causal=causal, timestep=timestep_embed
 | 
						|
                )
 | 
						|
 | 
						|
        return hidden_states
 | 
						|
 | 
						|
 | 
						|
class SpaceToDepthDownsample(nn.Module):
 | 
						|
    def __init__(self, dims, in_channels, out_channels, stride, spatial_padding_mode):
 | 
						|
        super().__init__()
 | 
						|
        self.stride = stride
 | 
						|
        self.group_size = in_channels * np.prod(stride) // out_channels
 | 
						|
        self.conv = make_conv_nd(
 | 
						|
            dims=dims,
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=out_channels // np.prod(stride),
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            causal=True,
 | 
						|
            spatial_padding_mode=spatial_padding_mode,
 | 
						|
        )
 | 
						|
 | 
						|
    def forward(self, x, causal: bool = True):
 | 
						|
        if self.stride[0] == 2:
 | 
						|
            x = torch.cat(
 | 
						|
                [x[:, :, :1, :, :], x], dim=2
 | 
						|
            )  # duplicate first frames for padding
 | 
						|
 | 
						|
        # skip connection
 | 
						|
        x_in = rearrange(
 | 
						|
            x,
 | 
						|
            "b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
 | 
						|
            p1=self.stride[0],
 | 
						|
            p2=self.stride[1],
 | 
						|
            p3=self.stride[2],
 | 
						|
        )
 | 
						|
        x_in = rearrange(x_in, "b (c g) d h w -> b c g d h w", g=self.group_size)
 | 
						|
        x_in = x_in.mean(dim=2)
 | 
						|
 | 
						|
        # conv
 | 
						|
        x = self.conv(x, causal=causal)
 | 
						|
        x = rearrange(
 | 
						|
            x,
 | 
						|
            "b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
 | 
						|
            p1=self.stride[0],
 | 
						|
            p2=self.stride[1],
 | 
						|
            p3=self.stride[2],
 | 
						|
        )
 | 
						|
 | 
						|
        x = x + x_in
 | 
						|
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class DepthToSpaceUpsample(nn.Module):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        dims,
 | 
						|
        in_channels,
 | 
						|
        stride,
 | 
						|
        residual=False,
 | 
						|
        out_channels_reduction_factor=1,
 | 
						|
        spatial_padding_mode="zeros",
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
        self.stride = stride
 | 
						|
        self.out_channels = (
 | 
						|
            np.prod(stride) * in_channels // out_channels_reduction_factor
 | 
						|
        )
 | 
						|
        self.conv = make_conv_nd(
 | 
						|
            dims=dims,
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=self.out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            causal=True,
 | 
						|
            spatial_padding_mode=spatial_padding_mode,
 | 
						|
        )
 | 
						|
        self.pixel_shuffle = PixelShuffleND(dims=dims, upscale_factors=stride)
 | 
						|
        self.residual = residual
 | 
						|
        self.out_channels_reduction_factor = out_channels_reduction_factor
 | 
						|
 | 
						|
    def forward(self, x, causal: bool = True):
 | 
						|
        if self.residual:
 | 
						|
            # Reshape and duplicate the input to match the output shape
 | 
						|
            x_in = self.pixel_shuffle(x)
 | 
						|
            num_repeat = np.prod(self.stride) // self.out_channels_reduction_factor
 | 
						|
            x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
 | 
						|
            if self.stride[0] == 2:
 | 
						|
                x_in = x_in[:, :, 1:, :, :]
 | 
						|
        x = self.conv(x, causal=causal)
 | 
						|
        x = self.pixel_shuffle(x)
 | 
						|
        if self.stride[0] == 2:
 | 
						|
            x = x[:, :, 1:, :, :]
 | 
						|
        if self.residual:
 | 
						|
            x = x + x_in
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class LayerNorm(nn.Module):
 | 
						|
    def __init__(self, dim, eps, elementwise_affine=True) -> None:
 | 
						|
        super().__init__()
 | 
						|
        self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = rearrange(x, "b c d h w -> b d h w c")
 | 
						|
        x = self.norm(x)
 | 
						|
        x = rearrange(x, "b d h w c -> b c d h w")
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class ResnetBlock3D(nn.Module):
 | 
						|
    r"""
 | 
						|
    A Resnet block.
 | 
						|
 | 
						|
    Parameters:
 | 
						|
        in_channels (`int`): The number of channels in the input.
 | 
						|
        out_channels (`int`, *optional*, default to be `None`):
 | 
						|
            The number of output channels for the first conv layer. If None, same as `in_channels`.
 | 
						|
        dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
 | 
						|
        groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
 | 
						|
        eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        dims: Union[int, Tuple[int, int]],
 | 
						|
        in_channels: int,
 | 
						|
        out_channels: Optional[int] = None,
 | 
						|
        dropout: float = 0.0,
 | 
						|
        groups: int = 32,
 | 
						|
        eps: float = 1e-6,
 | 
						|
        norm_layer: str = "group_norm",
 | 
						|
        inject_noise: bool = False,
 | 
						|
        timestep_conditioning: bool = False,
 | 
						|
        spatial_padding_mode: str = "zeros",
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
        self.in_channels = in_channels
 | 
						|
        out_channels = in_channels if out_channels is None else out_channels
 | 
						|
        self.out_channels = out_channels
 | 
						|
        self.inject_noise = inject_noise
 | 
						|
 | 
						|
        if norm_layer == "group_norm":
 | 
						|
            self.norm1 = nn.GroupNorm(
 | 
						|
                num_groups=groups, num_channels=in_channels, eps=eps, affine=True
 | 
						|
            )
 | 
						|
        elif norm_layer == "pixel_norm":
 | 
						|
            self.norm1 = PixelNorm()
 | 
						|
        elif norm_layer == "layer_norm":
 | 
						|
            self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
 | 
						|
 | 
						|
        self.non_linearity = nn.SiLU()
 | 
						|
 | 
						|
        self.conv1 = make_conv_nd(
 | 
						|
            dims,
 | 
						|
            in_channels,
 | 
						|
            out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            padding=1,
 | 
						|
            causal=True,
 | 
						|
            spatial_padding_mode=spatial_padding_mode,
 | 
						|
        )
 | 
						|
 | 
						|
        if inject_noise:
 | 
						|
            self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
 | 
						|
 | 
						|
        if norm_layer == "group_norm":
 | 
						|
            self.norm2 = nn.GroupNorm(
 | 
						|
                num_groups=groups, num_channels=out_channels, eps=eps, affine=True
 | 
						|
            )
 | 
						|
        elif norm_layer == "pixel_norm":
 | 
						|
            self.norm2 = PixelNorm()
 | 
						|
        elif norm_layer == "layer_norm":
 | 
						|
            self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
 | 
						|
 | 
						|
        self.dropout = torch.nn.Dropout(dropout)
 | 
						|
 | 
						|
        self.conv2 = make_conv_nd(
 | 
						|
            dims,
 | 
						|
            out_channels,
 | 
						|
            out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            padding=1,
 | 
						|
            causal=True,
 | 
						|
            spatial_padding_mode=spatial_padding_mode,
 | 
						|
        )
 | 
						|
 | 
						|
        if inject_noise:
 | 
						|
            self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
 | 
						|
 | 
						|
        self.conv_shortcut = (
 | 
						|
            make_linear_nd(
 | 
						|
                dims=dims, in_channels=in_channels, out_channels=out_channels
 | 
						|
            )
 | 
						|
            if in_channels != out_channels
 | 
						|
            else nn.Identity()
 | 
						|
        )
 | 
						|
 | 
						|
        self.norm3 = (
 | 
						|
            LayerNorm(in_channels, eps=eps, elementwise_affine=True)
 | 
						|
            if in_channels != out_channels
 | 
						|
            else nn.Identity()
 | 
						|
        )
 | 
						|
 | 
						|
        self.timestep_conditioning = timestep_conditioning
 | 
						|
 | 
						|
        if timestep_conditioning:
 | 
						|
            self.scale_shift_table = nn.Parameter(
 | 
						|
                torch.randn(4, in_channels) / in_channels**0.5
 | 
						|
            )
 | 
						|
 | 
						|
    def _feed_spatial_noise(
 | 
						|
        self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
 | 
						|
    ) -> torch.FloatTensor:
 | 
						|
        spatial_shape = hidden_states.shape[-2:]
 | 
						|
        device = hidden_states.device
 | 
						|
        dtype = hidden_states.dtype
 | 
						|
 | 
						|
        # similar to the "explicit noise inputs" method in style-gan
 | 
						|
        spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None]
 | 
						|
        scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...]
 | 
						|
        hidden_states = hidden_states + scaled_noise
 | 
						|
 | 
						|
        return hidden_states
 | 
						|
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        input_tensor: torch.FloatTensor,
 | 
						|
        causal: bool = True,
 | 
						|
        timestep: Optional[torch.Tensor] = None,
 | 
						|
    ) -> torch.FloatTensor:
 | 
						|
        hidden_states = input_tensor
 | 
						|
        batch_size = hidden_states.shape[0]
 | 
						|
 | 
						|
        hidden_states = self.norm1(hidden_states)
 | 
						|
        if self.timestep_conditioning:
 | 
						|
            assert (
 | 
						|
                timestep is not None
 | 
						|
            ), "should pass timestep with timestep_conditioning=True"
 | 
						|
            ada_values = self.scale_shift_table[
 | 
						|
                None, ..., None, None, None
 | 
						|
            ] + timestep.reshape(
 | 
						|
                batch_size,
 | 
						|
                4,
 | 
						|
                -1,
 | 
						|
                timestep.shape[-3],
 | 
						|
                timestep.shape[-2],
 | 
						|
                timestep.shape[-1],
 | 
						|
            )
 | 
						|
            shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
 | 
						|
 | 
						|
            hidden_states = hidden_states * (1 + scale1) + shift1
 | 
						|
 | 
						|
        hidden_states = self.non_linearity(hidden_states)
 | 
						|
 | 
						|
        hidden_states = self.conv1(hidden_states, causal=causal)
 | 
						|
 | 
						|
        if self.inject_noise:
 | 
						|
            hidden_states = self._feed_spatial_noise(
 | 
						|
                hidden_states, self.per_channel_scale1
 | 
						|
            )
 | 
						|
 | 
						|
        hidden_states = self.norm2(hidden_states)
 | 
						|
 | 
						|
        if self.timestep_conditioning:
 | 
						|
            hidden_states = hidden_states * (1 + scale2) + shift2
 | 
						|
 | 
						|
        hidden_states = self.non_linearity(hidden_states)
 | 
						|
 | 
						|
        hidden_states = self.dropout(hidden_states)
 | 
						|
 | 
						|
        hidden_states = self.conv2(hidden_states, causal=causal)
 | 
						|
 | 
						|
        if self.inject_noise:
 | 
						|
            hidden_states = self._feed_spatial_noise(
 | 
						|
                hidden_states, self.per_channel_scale2
 | 
						|
            )
 | 
						|
 | 
						|
        input_tensor = self.norm3(input_tensor)
 | 
						|
 | 
						|
        batch_size = input_tensor.shape[0]
 | 
						|
 | 
						|
        input_tensor = self.conv_shortcut(input_tensor)
 | 
						|
 | 
						|
        output_tensor = input_tensor + hidden_states
 | 
						|
 | 
						|
        return output_tensor
 | 
						|
 | 
						|
 | 
						|
def patchify(x, patch_size_hw, patch_size_t=1):
 | 
						|
    if patch_size_hw == 1 and patch_size_t == 1:
 | 
						|
        return x
 | 
						|
    if x.dim() == 4:
 | 
						|
        x = rearrange(
 | 
						|
            x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
 | 
						|
        )
 | 
						|
    elif x.dim() == 5:
 | 
						|
        x = rearrange(
 | 
						|
            x,
 | 
						|
            "b c (f p) (h q) (w r) -> b (c p r q) f h w",
 | 
						|
            p=patch_size_t,
 | 
						|
            q=patch_size_hw,
 | 
						|
            r=patch_size_hw,
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        raise ValueError(f"Invalid input shape: {x.shape}")
 | 
						|
 | 
						|
    return x
 | 
						|
 | 
						|
 | 
						|
def unpatchify(x, patch_size_hw, patch_size_t=1):
 | 
						|
    if patch_size_hw == 1 and patch_size_t == 1:
 | 
						|
        return x
 | 
						|
 | 
						|
    if x.dim() == 4:
 | 
						|
        x = rearrange(
 | 
						|
            x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
 | 
						|
        )
 | 
						|
    elif x.dim() == 5:
 | 
						|
        x = rearrange(
 | 
						|
            x,
 | 
						|
            "b (c p r q) f h w -> b c (f p) (h q) (w r)",
 | 
						|
            p=patch_size_t,
 | 
						|
            q=patch_size_hw,
 | 
						|
            r=patch_size_hw,
 | 
						|
        )
 | 
						|
 | 
						|
    return x
 | 
						|
 | 
						|
 | 
						|
def create_video_autoencoder_demo_config(
 | 
						|
    latent_channels: int = 64,
 | 
						|
):
 | 
						|
    encoder_blocks = [
 | 
						|
        ("res_x", {"num_layers": 2}),
 | 
						|
        ("compress_space_res", {"multiplier": 2}),
 | 
						|
        ("res_x", {"num_layers": 2}),
 | 
						|
        ("compress_time_res", {"multiplier": 2}),
 | 
						|
        ("res_x", {"num_layers": 1}),
 | 
						|
        ("compress_all_res", {"multiplier": 2}),
 | 
						|
        ("res_x", {"num_layers": 1}),
 | 
						|
        ("compress_all_res", {"multiplier": 2}),
 | 
						|
        ("res_x", {"num_layers": 1}),
 | 
						|
    ]
 | 
						|
    decoder_blocks = [
 | 
						|
        ("res_x", {"num_layers": 2, "inject_noise": False}),
 | 
						|
        ("compress_all", {"residual": True, "multiplier": 2}),
 | 
						|
        ("res_x", {"num_layers": 2, "inject_noise": False}),
 | 
						|
        ("compress_all", {"residual": True, "multiplier": 2}),
 | 
						|
        ("res_x", {"num_layers": 2, "inject_noise": False}),
 | 
						|
        ("compress_all", {"residual": True, "multiplier": 2}),
 | 
						|
        ("res_x", {"num_layers": 2, "inject_noise": False}),
 | 
						|
    ]
 | 
						|
    return {
 | 
						|
        "_class_name": "CausalVideoAutoencoder",
 | 
						|
        "dims": 3,
 | 
						|
        "encoder_blocks": encoder_blocks,
 | 
						|
        "decoder_blocks": decoder_blocks,
 | 
						|
        "latent_channels": latent_channels,
 | 
						|
        "norm_layer": "pixel_norm",
 | 
						|
        "patch_size": 4,
 | 
						|
        "latent_log_var": "uniform",
 | 
						|
        "use_quant_conv": False,
 | 
						|
        "causal_decoder": False,
 | 
						|
        "timestep_conditioning": True,
 | 
						|
        "spatial_padding_mode": "replicate",
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
def test_vae_patchify_unpatchify():
 | 
						|
    import torch
 | 
						|
 | 
						|
    x = torch.randn(2, 3, 8, 64, 64)
 | 
						|
    x_patched = patchify(x, patch_size_hw=4, patch_size_t=4)
 | 
						|
    x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4)
 | 
						|
    assert torch.allclose(x, x_unpatched)
 | 
						|
 | 
						|
 | 
						|
def demo_video_autoencoder_forward_backward():
 | 
						|
    # Configuration for the VideoAutoencoder
 | 
						|
    config = create_video_autoencoder_demo_config()
 | 
						|
 | 
						|
    # Instantiate the VideoAutoencoder with the specified configuration
 | 
						|
    video_autoencoder = CausalVideoAutoencoder.from_config(config)
 | 
						|
 | 
						|
    print(video_autoencoder)
 | 
						|
    video_autoencoder.eval()
 | 
						|
    # Print the total number of parameters in the video autoencoder
 | 
						|
    total_params = sum(p.numel() for p in video_autoencoder.parameters())
 | 
						|
    print(f"Total number of parameters in VideoAutoencoder: {total_params:,}")
 | 
						|
 | 
						|
    # Create a mock input tensor simulating a batch of videos
 | 
						|
    # Shape: (batch_size, channels, depth, height, width)
 | 
						|
    # E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame
 | 
						|
    input_videos = torch.randn(2, 3, 17, 64, 64)
 | 
						|
 | 
						|
    # Forward pass: encode and decode the input videos
 | 
						|
    latent = video_autoencoder.encode(input_videos).latent_dist.mode()
 | 
						|
    print(f"input shape={input_videos.shape}")
 | 
						|
    print(f"latent shape={latent.shape}")
 | 
						|
 | 
						|
    timestep = torch.ones(input_videos.shape[0]) * 0.1
 | 
						|
    reconstructed_videos = video_autoencoder.decode(
 | 
						|
        latent, target_shape=input_videos.shape, timestep=timestep
 | 
						|
    ).sample
 | 
						|
 | 
						|
    print(f"reconstructed shape={reconstructed_videos.shape}")
 | 
						|
 | 
						|
    # Validate that single image gets treated the same way as first frame
 | 
						|
    input_image = input_videos[:, :, :1, :, :]
 | 
						|
    image_latent = video_autoencoder.encode(input_image).latent_dist.mode()
 | 
						|
    _ = video_autoencoder.decode(
 | 
						|
        image_latent, target_shape=image_latent.shape, timestep=timestep
 | 
						|
    ).sample
 | 
						|
 | 
						|
    first_frame_latent = latent[:, :, :1, :, :]
 | 
						|
 | 
						|
    assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
 | 
						|
    # assert torch.allclose(reconstructed_image, reconstructed_videos[:, :, :1, :, :], atol=1e-6)
 | 
						|
    # assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
 | 
						|
    # assert (reconstructed_image == reconstructed_videos[:, :, :1, :, :]).all()
 | 
						|
 | 
						|
    # Calculate the loss (e.g., mean squared error)
 | 
						|
    loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
 | 
						|
 | 
						|
    # Perform backward pass
 | 
						|
    loss.backward()
 | 
						|
 | 
						|
    print(f"Demo completed with loss: {loss.item()}")
 | 
						|
 | 
						|
 | 
						|
# Ensure to call the demo function to execute the forward and backward pass
 | 
						|
if __name__ == "__main__":
 | 
						|
    demo_video_autoencoder_forward_backward()
 |