mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2046 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			2046 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
 | 
						|
import copy
 | 
						|
import inspect
 | 
						|
import math
 | 
						|
import re
 | 
						|
from contextlib import nullcontext
 | 
						|
from dataclasses import dataclass
 | 
						|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
 | 
						|
 | 
						|
import torch
 | 
						|
import torch.nn.functional as F
 | 
						|
from diffusers.image_processor import VaeImageProcessor
 | 
						|
from diffusers.models import AutoencoderKL
 | 
						|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
 | 
						|
from diffusers.schedulers import DPMSolverMultistepScheduler
 | 
						|
from diffusers.utils import deprecate, logging
 | 
						|
from diffusers.utils.torch_utils import randn_tensor
 | 
						|
from einops import rearrange
 | 
						|
from transformers import (
 | 
						|
    T5EncoderModel,
 | 
						|
    T5Tokenizer,
 | 
						|
    AutoModelForCausalLM,
 | 
						|
    AutoProcessor,
 | 
						|
    AutoTokenizer,
 | 
						|
)
 | 
						|
 | 
						|
from ltx_video.models.autoencoders.causal_video_autoencoder import (
 | 
						|
    CausalVideoAutoencoder,
 | 
						|
)
 | 
						|
from ltx_video.models.autoencoders.vae_encode import (
 | 
						|
    get_vae_size_scale_factor,
 | 
						|
    latent_to_pixel_coords,
 | 
						|
    vae_decode,
 | 
						|
    vae_encode,
 | 
						|
)
 | 
						|
from ltx_video.models.transformers.symmetric_patchifier import Patchifier
 | 
						|
from ltx_video.models.transformers.transformer3d import Transformer3DModel
 | 
						|
from ltx_video.schedulers.rf import TimestepShifter
 | 
						|
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
 | 
						|
from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt
 | 
						|
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
 | 
						|
from ltx_video.models.autoencoders.vae_encode import (
 | 
						|
    un_normalize_latents,
 | 
						|
    normalize_latents,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
 | 
						|
 | 
						|
 | 
						|
ASPECT_RATIO_1024_BIN = {
 | 
						|
    "0.25": [512.0, 2048.0],
 | 
						|
    "0.28": [512.0, 1856.0],
 | 
						|
    "0.32": [576.0, 1792.0],
 | 
						|
    "0.33": [576.0, 1728.0],
 | 
						|
    "0.35": [576.0, 1664.0],
 | 
						|
    "0.4": [640.0, 1600.0],
 | 
						|
    "0.42": [640.0, 1536.0],
 | 
						|
    "0.48": [704.0, 1472.0],
 | 
						|
    "0.5": [704.0, 1408.0],
 | 
						|
    "0.52": [704.0, 1344.0],
 | 
						|
    "0.57": [768.0, 1344.0],
 | 
						|
    "0.6": [768.0, 1280.0],
 | 
						|
    "0.68": [832.0, 1216.0],
 | 
						|
    "0.72": [832.0, 1152.0],
 | 
						|
    "0.78": [896.0, 1152.0],
 | 
						|
    "0.82": [896.0, 1088.0],
 | 
						|
    "0.88": [960.0, 1088.0],
 | 
						|
    "0.94": [960.0, 1024.0],
 | 
						|
    "1.0": [1024.0, 1024.0],
 | 
						|
    "1.07": [1024.0, 960.0],
 | 
						|
    "1.13": [1088.0, 960.0],
 | 
						|
    "1.21": [1088.0, 896.0],
 | 
						|
    "1.29": [1152.0, 896.0],
 | 
						|
    "1.38": [1152.0, 832.0],
 | 
						|
    "1.46": [1216.0, 832.0],
 | 
						|
    "1.67": [1280.0, 768.0],
 | 
						|
    "1.75": [1344.0, 768.0],
 | 
						|
    "2.0": [1408.0, 704.0],
 | 
						|
    "2.09": [1472.0, 704.0],
 | 
						|
    "2.4": [1536.0, 640.0],
 | 
						|
    "2.5": [1600.0, 640.0],
 | 
						|
    "3.0": [1728.0, 576.0],
 | 
						|
    "4.0": [2048.0, 512.0],
 | 
						|
}
 | 
						|
 | 
						|
ASPECT_RATIO_512_BIN = {
 | 
						|
    "0.25": [256.0, 1024.0],
 | 
						|
    "0.28": [256.0, 928.0],
 | 
						|
    "0.32": [288.0, 896.0],
 | 
						|
    "0.33": [288.0, 864.0],
 | 
						|
    "0.35": [288.0, 832.0],
 | 
						|
    "0.4": [320.0, 800.0],
 | 
						|
    "0.42": [320.0, 768.0],
 | 
						|
    "0.48": [352.0, 736.0],
 | 
						|
    "0.5": [352.0, 704.0],
 | 
						|
    "0.52": [352.0, 672.0],
 | 
						|
    "0.57": [384.0, 672.0],
 | 
						|
    "0.6": [384.0, 640.0],
 | 
						|
    "0.68": [416.0, 608.0],
 | 
						|
    "0.72": [416.0, 576.0],
 | 
						|
    "0.78": [448.0, 576.0],
 | 
						|
    "0.82": [448.0, 544.0],
 | 
						|
    "0.88": [480.0, 544.0],
 | 
						|
    "0.94": [480.0, 512.0],
 | 
						|
    "1.0": [512.0, 512.0],
 | 
						|
    "1.07": [512.0, 480.0],
 | 
						|
    "1.13": [544.0, 480.0],
 | 
						|
    "1.21": [544.0, 448.0],
 | 
						|
    "1.29": [576.0, 448.0],
 | 
						|
    "1.38": [576.0, 416.0],
 | 
						|
    "1.46": [608.0, 416.0],
 | 
						|
    "1.67": [640.0, 384.0],
 | 
						|
    "1.75": [672.0, 384.0],
 | 
						|
    "2.0": [704.0, 352.0],
 | 
						|
    "2.09": [736.0, 352.0],
 | 
						|
    "2.4": [768.0, 320.0],
 | 
						|
    "2.5": [800.0, 320.0],
 | 
						|
    "3.0": [864.0, 288.0],
 | 
						|
    "4.0": [1024.0, 256.0],
 | 
						|
}
 | 
						|
 | 
						|
class MomentumBuffer:
 | 
						|
    def __init__(self, momentum: float): 
 | 
						|
        self.momentum = momentum 
 | 
						|
        self.running_average = 0 
 | 
						|
    
 | 
						|
    def update(self, update_value: torch.Tensor): 
 | 
						|
        new_average = self.momentum * self.running_average 
 | 
						|
        self.running_average = update_value + new_average
 | 
						|
    
 | 
						|
 | 
						|
 | 
						|
def project( 
 | 
						|
        v0: torch.Tensor, # [B, C, T, H, W] 
 | 
						|
        v1: torch.Tensor, # [B, C, T, H, W] 
 | 
						|
        ): 
 | 
						|
    dtype = v0.dtype 
 | 
						|
    v0, v1 = v0.double(), v1.double() 
 | 
						|
    v1 = torch.nn.functional.normalize(v1, dim=[-2, -1]) 
 | 
						|
    v0_parallel = (v0 * v1).sum(dim=[-2, -1], keepdim=True) * v1 
 | 
						|
    v0_orthogonal = v0 - v0_parallel
 | 
						|
    return v0_parallel.to(dtype), v0_orthogonal.to(dtype)
 | 
						|
 | 
						|
 | 
						|
def adaptive_projected_guidance( 
 | 
						|
          diff: torch.Tensor, # [B, C, T, H, W] 
 | 
						|
          pred_cond: torch.Tensor, # [B, C, T, H, W] 
 | 
						|
          momentum_buffer: MomentumBuffer = None, 
 | 
						|
          eta: float = 0.0,
 | 
						|
          norm_threshold: float = 55,
 | 
						|
          ): 
 | 
						|
    if momentum_buffer is not None: 
 | 
						|
        momentum_buffer.update(diff) 
 | 
						|
        diff = momentum_buffer.running_average
 | 
						|
    if norm_threshold > 0: 
 | 
						|
        ones = torch.ones_like(diff) 
 | 
						|
        diff_norm = diff.norm(p=2, dim=[-2, -1], keepdim=True) 
 | 
						|
        print(f"diff_norm: {diff_norm}")
 | 
						|
        scale_factor = torch.minimum(ones, norm_threshold / diff_norm) 
 | 
						|
        diff = diff * scale_factor 
 | 
						|
    diff_parallel, diff_orthogonal = project(diff, pred_cond) 
 | 
						|
    normalized_update = diff_orthogonal + eta * diff_parallel
 | 
						|
    return normalized_update
 | 
						|
 | 
						|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
 | 
						|
def retrieve_timesteps(
 | 
						|
    scheduler,
 | 
						|
    num_inference_steps: Optional[int] = None,
 | 
						|
    device: Optional[Union[str, torch.device]] = None,
 | 
						|
    timesteps: Optional[List[int]] = None,
 | 
						|
    max_timestep: Optional[float] = 1.0,
 | 
						|
    skip_initial_inference_steps: int = 0,
 | 
						|
    skip_final_inference_steps: int = 0,
 | 
						|
    **kwargs,
 | 
						|
):
 | 
						|
    """
 | 
						|
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
 | 
						|
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
 | 
						|
 | 
						|
    Args:
 | 
						|
        scheduler (`SchedulerMixin`):
 | 
						|
            The scheduler to get timesteps from.
 | 
						|
        num_inference_steps (`int`):
 | 
						|
            The number of diffusion steps used when generating samples with a pre-trained model. If used,
 | 
						|
            `timesteps` must be `None`.
 | 
						|
        device (`str` or `torch.device`, *optional*):
 | 
						|
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
 | 
						|
        timesteps (`List[int]`, *optional*):
 | 
						|
            Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
 | 
						|
            timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
 | 
						|
            must be `None`.
 | 
						|
        max_timestep ('float', *optional*, defaults to 1.0):
 | 
						|
            The initial noising level for image-to-image/video-to-video. The list if timestamps will be
 | 
						|
            truncated to start with a timestamp greater or equal to this.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
 | 
						|
        second element is the number of inference steps.
 | 
						|
    """
 | 
						|
    if timesteps is not None:
 | 
						|
        accepts_timesteps = "timesteps" in set(
 | 
						|
            inspect.signature(scheduler.set_timesteps).parameters.keys()
 | 
						|
        )
 | 
						|
        if not accepts_timesteps:
 | 
						|
            raise ValueError(
 | 
						|
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
 | 
						|
                f" timestep schedules. Please check whether you are using the correct scheduler."
 | 
						|
            )
 | 
						|
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
 | 
						|
        timesteps = scheduler.timesteps
 | 
						|
        num_inference_steps = len(timesteps)
 | 
						|
    else:
 | 
						|
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
 | 
						|
        timesteps = scheduler.timesteps
 | 
						|
 | 
						|
    if (
 | 
						|
        skip_initial_inference_steps < 0
 | 
						|
        or skip_final_inference_steps < 0
 | 
						|
        or skip_initial_inference_steps + skip_final_inference_steps
 | 
						|
        >= num_inference_steps
 | 
						|
    ):
 | 
						|
        raise ValueError(
 | 
						|
            f"max_timestep {max_timestep} is smaller than the minimum timestep {timesteps.min()}"
 | 
						|
            "invalid skip inference step values: must be non-negative and the sum of skip_initial_inference_steps and skip_final_inference_steps must be less than the number of inference steps"
 | 
						|
        )
 | 
						|
 | 
						|
    timesteps = timesteps[
 | 
						|
        skip_initial_inference_steps : len(timesteps) - skip_final_inference_steps
 | 
						|
    ]    
 | 
						|
 | 
						|
    if max_timestep < 1.0:
 | 
						|
        if max_timestep < timesteps.min():
 | 
						|
            raise ValueError(
 | 
						|
                f"max_timestep {max_timestep} is smaller than the minimum timestep {timesteps.min()}"
 | 
						|
            )
 | 
						|
        timesteps = timesteps[timesteps <= max_timestep]
 | 
						|
    num_inference_steps = len(timesteps)
 | 
						|
    scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
 | 
						|
 | 
						|
    return timesteps, num_inference_steps
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class ConditioningItem:
 | 
						|
    """
 | 
						|
    Defines a single frame-conditioning item - a single frame or a sequence of frames.
 | 
						|
 | 
						|
    Attributes:
 | 
						|
        media_item (torch.Tensor): shape=(b, 3, f, h, w). The media item to condition on.
 | 
						|
        media_frame_number (int): The start-frame number of the media item in the generated video.
 | 
						|
        conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning).
 | 
						|
        media_x (Optional[int]): Optional left x coordinate of the media item in the generated frame.
 | 
						|
        media_y (Optional[int]): Optional top y coordinate of the media item in the generated frame.
 | 
						|
    """
 | 
						|
 | 
						|
    media_item: torch.Tensor
 | 
						|
    media_frame_number: int
 | 
						|
    conditioning_strength: float
 | 
						|
    control_frames: bool = False
 | 
						|
    media_x: Optional[int] = None
 | 
						|
    media_y: Optional[int] = None
 | 
						|
 | 
						|
 | 
						|
class LTXVideoPipeline(DiffusionPipeline):
 | 
						|
    r"""
 | 
						|
    Pipeline for text-to-image generation using LTX-Video.
 | 
						|
 | 
						|
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
 | 
						|
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
 | 
						|
 | 
						|
    Args:
 | 
						|
        vae ([`AutoencoderKL`]):
 | 
						|
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
 | 
						|
        text_encoder ([`T5EncoderModel`]):
 | 
						|
            Frozen text-encoder. This uses
 | 
						|
            [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
 | 
						|
            [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
 | 
						|
        tokenizer (`T5Tokenizer`):
 | 
						|
            Tokenizer of class
 | 
						|
            [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
 | 
						|
        transformer ([`Transformer2DModel`]):
 | 
						|
            A text conditioned `Transformer2DModel` to denoise the encoded image latents.
 | 
						|
        scheduler ([`SchedulerMixin`]):
 | 
						|
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
 | 
						|
    """
 | 
						|
 | 
						|
    bad_punct_regex = re.compile(
 | 
						|
        r"["
 | 
						|
        + "#®•©™&@·º½¾¿¡§~"
 | 
						|
        + r"\)"
 | 
						|
        + r"\("
 | 
						|
        + r"\]"
 | 
						|
        + r"\["
 | 
						|
        + r"\}"
 | 
						|
        + r"\{"
 | 
						|
        + r"\|"
 | 
						|
        + "\\"
 | 
						|
        + r"\/"
 | 
						|
        + r"\*"
 | 
						|
        + r"]{1,}"
 | 
						|
    )  # noqa
 | 
						|
 | 
						|
    _optional_components = [
 | 
						|
        "tokenizer",
 | 
						|
        "text_encoder",
 | 
						|
        "prompt_enhancer_image_caption_model",
 | 
						|
        "prompt_enhancer_image_caption_processor",
 | 
						|
        "prompt_enhancer_llm_model",
 | 
						|
        "prompt_enhancer_llm_tokenizer",
 | 
						|
    ]
 | 
						|
    model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae"
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        tokenizer: T5Tokenizer,
 | 
						|
        text_encoder: T5EncoderModel,
 | 
						|
        vae: AutoencoderKL,
 | 
						|
        transformer: Transformer3DModel,
 | 
						|
        scheduler: DPMSolverMultistepScheduler,
 | 
						|
        patchifier: Patchifier,
 | 
						|
        prompt_enhancer_image_caption_model: AutoModelForCausalLM,
 | 
						|
        prompt_enhancer_image_caption_processor: AutoProcessor,
 | 
						|
        prompt_enhancer_llm_model: AutoModelForCausalLM,
 | 
						|
        prompt_enhancer_llm_tokenizer: AutoTokenizer,
 | 
						|
        allowed_inference_steps: Optional[List[float]] = None,
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
 | 
						|
        self.register_modules(
 | 
						|
            tokenizer=tokenizer,
 | 
						|
            text_encoder=text_encoder,
 | 
						|
            vae=vae,
 | 
						|
            transformer=transformer,
 | 
						|
            scheduler=scheduler,
 | 
						|
            patchifier=patchifier,
 | 
						|
            prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model,
 | 
						|
            prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor,
 | 
						|
            prompt_enhancer_llm_model=prompt_enhancer_llm_model,
 | 
						|
            prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer,
 | 
						|
        )
 | 
						|
 | 
						|
        self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(
 | 
						|
            self.vae
 | 
						|
        )
 | 
						|
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
 | 
						|
 | 
						|
        self.allowed_inference_steps = allowed_inference_steps
 | 
						|
 | 
						|
    def mask_text_embeddings(self, emb, mask):
 | 
						|
        if emb.shape[0] == 1:
 | 
						|
            keep_index = mask.sum().item()
 | 
						|
            return emb[:, :, :keep_index, :], keep_index
 | 
						|
        else:
 | 
						|
            masked_feature = emb * mask[:, None, :, None]
 | 
						|
            return masked_feature, emb.shape[2]
 | 
						|
 | 
						|
    # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
 | 
						|
    def encode_prompt(
 | 
						|
        self,
 | 
						|
        prompt: Union[str, List[str]],
 | 
						|
        do_classifier_free_guidance: bool = True,
 | 
						|
        negative_prompt: str = "",
 | 
						|
        num_images_per_prompt: int = 1,
 | 
						|
        device: Optional[torch.device] = None,
 | 
						|
        prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        prompt_attention_mask: Optional[torch.FloatTensor] = None,
 | 
						|
        negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
 | 
						|
        text_encoder_max_tokens: int = 256,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        Encodes the prompt into text encoder hidden states.
 | 
						|
 | 
						|
        Args:
 | 
						|
            prompt (`str` or `List[str]`, *optional*):
 | 
						|
                prompt to be encoded
 | 
						|
            negative_prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
 | 
						|
                instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
 | 
						|
                This should be "".
 | 
						|
            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
 | 
						|
                whether to use classifier free guidance or not
 | 
						|
            num_images_per_prompt (`int`, *optional*, defaults to 1):
 | 
						|
                number of images that should be generated per prompt
 | 
						|
            device: (`torch.device`, *optional*):
 | 
						|
                torch device to place the resulting embeddings on
 | 
						|
            prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
 | 
						|
                provided, text embeddings will be generated from `prompt` input argument.
 | 
						|
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated negative text embeddings.
 | 
						|
        """
 | 
						|
 | 
						|
        if "mask_feature" in kwargs:
 | 
						|
            deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
 | 
						|
            deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
 | 
						|
 | 
						|
        if device is None:
 | 
						|
            device = self._execution_device
 | 
						|
 | 
						|
        if prompt is not None and isinstance(prompt, str):
 | 
						|
            batch_size = 1
 | 
						|
        elif prompt is not None and isinstance(prompt, list):
 | 
						|
            batch_size = len(prompt)
 | 
						|
        else:
 | 
						|
            batch_size = prompt_embeds.shape[0]
 | 
						|
 | 
						|
        # See Section 3.1. of the paper.
 | 
						|
        max_length = (
 | 
						|
            text_encoder_max_tokens  # TPU supports only lengths multiple of 128
 | 
						|
        )
 | 
						|
        if prompt_embeds is None:
 | 
						|
            assert (
 | 
						|
                self.text_encoder is not None
 | 
						|
            ), "You should provide either prompt_embeds or self.text_encoder should not be None,"
 | 
						|
            text_enc_device = next(self.text_encoder.parameters()).device
 | 
						|
            prompt = self._text_preprocessing(prompt)
 | 
						|
            text_inputs = self.tokenizer(
 | 
						|
                prompt,
 | 
						|
                padding="max_length",
 | 
						|
                max_length=max_length,
 | 
						|
                truncation=True,
 | 
						|
                add_special_tokens=True,
 | 
						|
                return_tensors="pt",
 | 
						|
            )
 | 
						|
            text_input_ids = text_inputs.input_ids
 | 
						|
            untruncated_ids = self.tokenizer(
 | 
						|
                prompt, padding="longest", return_tensors="pt"
 | 
						|
            ).input_ids
 | 
						|
 | 
						|
            if untruncated_ids.shape[-1] >= text_input_ids.shape[
 | 
						|
                -1
 | 
						|
            ] and not torch.equal(text_input_ids, untruncated_ids):
 | 
						|
                removed_text = self.tokenizer.batch_decode(
 | 
						|
                    untruncated_ids[:, max_length - 1 : -1]
 | 
						|
                )
 | 
						|
                logger.warning(
 | 
						|
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
 | 
						|
                    f" {max_length} tokens: {removed_text}"
 | 
						|
                )
 | 
						|
 | 
						|
            prompt_attention_mask = text_inputs.attention_mask
 | 
						|
            prompt_attention_mask = prompt_attention_mask.to(text_enc_device)
 | 
						|
            prompt_attention_mask = prompt_attention_mask.to(device)
 | 
						|
 | 
						|
            prompt_embeds = self.text_encoder(
 | 
						|
                text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask
 | 
						|
            )
 | 
						|
            prompt_embeds = prompt_embeds[0]
 | 
						|
 | 
						|
        if self.text_encoder is not None:
 | 
						|
            dtype = self.text_encoder.dtype
 | 
						|
        elif self.transformer is not None:
 | 
						|
            dtype = self.transformer.dtype
 | 
						|
        else:
 | 
						|
            dtype = None
 | 
						|
 | 
						|
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
 | 
						|
 | 
						|
        bs_embed, seq_len, _ = prompt_embeds.shape
 | 
						|
        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
 | 
						|
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
 | 
						|
        prompt_embeds = prompt_embeds.view(
 | 
						|
            bs_embed * num_images_per_prompt, seq_len, -1
 | 
						|
        )
 | 
						|
        prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
 | 
						|
        prompt_attention_mask = prompt_attention_mask.view(
 | 
						|
            bs_embed * num_images_per_prompt, -1
 | 
						|
        )
 | 
						|
 | 
						|
        # get unconditional embeddings for classifier free guidance
 | 
						|
        if do_classifier_free_guidance and negative_prompt_embeds is None:
 | 
						|
            uncond_tokens = self._text_preprocessing(negative_prompt)
 | 
						|
            uncond_tokens = uncond_tokens * batch_size
 | 
						|
            max_length = prompt_embeds.shape[1]
 | 
						|
            uncond_input = self.tokenizer(
 | 
						|
                uncond_tokens,
 | 
						|
                padding="max_length",
 | 
						|
                max_length=max_length,
 | 
						|
                truncation=True,
 | 
						|
                return_attention_mask=True,
 | 
						|
                add_special_tokens=True,
 | 
						|
                return_tensors="pt",
 | 
						|
            )
 | 
						|
            negative_prompt_attention_mask = uncond_input.attention_mask
 | 
						|
            negative_prompt_attention_mask = negative_prompt_attention_mask.to(
 | 
						|
                text_enc_device
 | 
						|
            )
 | 
						|
 | 
						|
            negative_prompt_embeds = self.text_encoder(
 | 
						|
                uncond_input.input_ids.to(text_enc_device),
 | 
						|
                attention_mask=negative_prompt_attention_mask,
 | 
						|
            )
 | 
						|
            negative_prompt_embeds = negative_prompt_embeds[0]
 | 
						|
 | 
						|
        if do_classifier_free_guidance:
 | 
						|
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
 | 
						|
            seq_len = negative_prompt_embeds.shape[1]
 | 
						|
 | 
						|
            negative_prompt_embeds = negative_prompt_embeds.to(
 | 
						|
                dtype=dtype, device=device
 | 
						|
            )
 | 
						|
 | 
						|
            negative_prompt_embeds = negative_prompt_embeds.repeat(
 | 
						|
                1, num_images_per_prompt, 1
 | 
						|
            )
 | 
						|
            negative_prompt_embeds = negative_prompt_embeds.view(
 | 
						|
                batch_size * num_images_per_prompt, seq_len, -1
 | 
						|
            )
 | 
						|
 | 
						|
            negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
 | 
						|
                1, num_images_per_prompt
 | 
						|
            )
 | 
						|
            negative_prompt_attention_mask = negative_prompt_attention_mask.view(
 | 
						|
                bs_embed * num_images_per_prompt, -1
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            negative_prompt_embeds = None
 | 
						|
            negative_prompt_attention_mask = None
 | 
						|
 | 
						|
        return (
 | 
						|
            prompt_embeds,
 | 
						|
            prompt_attention_mask,
 | 
						|
            negative_prompt_embeds,
 | 
						|
            negative_prompt_attention_mask,
 | 
						|
        )
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
 | 
						|
    def prepare_extra_step_kwargs(self, generator, eta):
 | 
						|
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
 | 
						|
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
 | 
						|
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
 | 
						|
        # and should be between [0, 1]
 | 
						|
 | 
						|
        accepts_eta = "eta" in set(
 | 
						|
            inspect.signature(self.scheduler.step).parameters.keys()
 | 
						|
        )
 | 
						|
        extra_step_kwargs = {}
 | 
						|
        if accepts_eta:
 | 
						|
            extra_step_kwargs["eta"] = eta
 | 
						|
 | 
						|
        # check if the scheduler accepts generator
 | 
						|
        accepts_generator = "generator" in set(
 | 
						|
            inspect.signature(self.scheduler.step).parameters.keys()
 | 
						|
        )
 | 
						|
        if accepts_generator:
 | 
						|
            extra_step_kwargs["generator"] = generator
 | 
						|
        return extra_step_kwargs
 | 
						|
 | 
						|
    def check_inputs(
 | 
						|
        self,
 | 
						|
        prompt,
 | 
						|
        height,
 | 
						|
        width,
 | 
						|
        negative_prompt,
 | 
						|
        prompt_embeds=None,
 | 
						|
        negative_prompt_embeds=None,
 | 
						|
        prompt_attention_mask=None,
 | 
						|
        negative_prompt_attention_mask=None,
 | 
						|
        enhance_prompt=False,
 | 
						|
    ):
 | 
						|
        if height % 8 != 0 or width % 8 != 0:
 | 
						|
            raise ValueError(
 | 
						|
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
 | 
						|
            )
 | 
						|
 | 
						|
        if prompt is not None and prompt_embeds is not None:
 | 
						|
            raise ValueError(
 | 
						|
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
 | 
						|
                " only forward one of the two."
 | 
						|
            )
 | 
						|
        elif prompt is None and prompt_embeds is None:
 | 
						|
            raise ValueError(
 | 
						|
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
 | 
						|
            )
 | 
						|
        elif prompt is not None and (
 | 
						|
            not isinstance(prompt, str) and not isinstance(prompt, list)
 | 
						|
        ):
 | 
						|
            raise ValueError(
 | 
						|
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
 | 
						|
            )
 | 
						|
 | 
						|
        if prompt is not None and negative_prompt_embeds is not None:
 | 
						|
            raise ValueError(
 | 
						|
                f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
 | 
						|
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
 | 
						|
            )
 | 
						|
 | 
						|
        if negative_prompt is not None and negative_prompt_embeds is not None:
 | 
						|
            raise ValueError(
 | 
						|
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
 | 
						|
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
 | 
						|
            )
 | 
						|
 | 
						|
        if prompt_embeds is not None and prompt_attention_mask is None:
 | 
						|
            raise ValueError(
 | 
						|
                "Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
 | 
						|
            )
 | 
						|
 | 
						|
        if (
 | 
						|
            negative_prompt_embeds is not None
 | 
						|
            and negative_prompt_attention_mask is None
 | 
						|
        ):
 | 
						|
            raise ValueError(
 | 
						|
                "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
 | 
						|
            )
 | 
						|
 | 
						|
        if prompt_embeds is not None and negative_prompt_embeds is not None:
 | 
						|
            if prompt_embeds.shape != negative_prompt_embeds.shape:
 | 
						|
                raise ValueError(
 | 
						|
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
 | 
						|
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
 | 
						|
                    f" {negative_prompt_embeds.shape}."
 | 
						|
                )
 | 
						|
            if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
 | 
						|
                raise ValueError(
 | 
						|
                    "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
 | 
						|
                    f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
 | 
						|
                    f" {negative_prompt_attention_mask.shape}."
 | 
						|
                )
 | 
						|
 | 
						|
        if enhance_prompt:
 | 
						|
            assert (
 | 
						|
                self.prompt_enhancer_image_caption_model is not None
 | 
						|
            ), "Image caption model must be initialized if enhance_prompt is True"
 | 
						|
            assert (
 | 
						|
                self.prompt_enhancer_image_caption_processor is not None
 | 
						|
            ), "Image caption processor must be initialized if enhance_prompt is True"
 | 
						|
            assert (
 | 
						|
                self.prompt_enhancer_llm_model is not None
 | 
						|
            ), "Text prompt enhancer model must be initialized if enhance_prompt is True"
 | 
						|
            assert (
 | 
						|
                self.prompt_enhancer_llm_tokenizer is not None
 | 
						|
            ), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True"
 | 
						|
 | 
						|
    def _text_preprocessing(self, text):
 | 
						|
        if not isinstance(text, (tuple, list)):
 | 
						|
            text = [text]
 | 
						|
 | 
						|
        def process(text: str):
 | 
						|
            text = text.strip()
 | 
						|
            return text
 | 
						|
 | 
						|
        return [process(t) for t in text]
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def add_noise_to_image_conditioning_latents(
 | 
						|
        t: float,
 | 
						|
        init_latents: torch.Tensor,
 | 
						|
        latents: torch.Tensor,
 | 
						|
        noise_scale: float,
 | 
						|
        conditioning_mask: torch.Tensor,
 | 
						|
        generator,
 | 
						|
        eps=1e-6,
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Add timestep-dependent noise to the hard-conditioning latents.
 | 
						|
        This helps with motion continuity, especially when conditioned on a single frame.
 | 
						|
        """
 | 
						|
        noise = randn_tensor(
 | 
						|
            latents.shape,
 | 
						|
            generator=generator,
 | 
						|
            device=latents.device,
 | 
						|
            dtype=latents.dtype,
 | 
						|
        )
 | 
						|
        # Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
 | 
						|
        need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
 | 
						|
        noised_latents = init_latents + noise_scale * noise * (t**2)
 | 
						|
        latents = torch.where(need_to_noise, noised_latents, latents)
 | 
						|
        return latents
 | 
						|
 | 
						|
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
 | 
						|
    def prepare_latents(
 | 
						|
        self,
 | 
						|
        latents: torch.Tensor | None,
 | 
						|
        media_items: torch.Tensor | None,
 | 
						|
        timestep: float,
 | 
						|
        latent_shape: torch.Size | Tuple[Any, ...],
 | 
						|
        dtype: torch.dtype,
 | 
						|
        device: torch.device,
 | 
						|
        generator: torch.Generator | List[torch.Generator],
 | 
						|
        vae_per_channel_normalize: bool = True,
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Prepare the initial latent tensor to be denoised.
 | 
						|
        The latents are either pure noise or a noised version of the encoded media items.
 | 
						|
        Args:
 | 
						|
            latents (`torch.FloatTensor` or `None`):
 | 
						|
                The latents to use (provided by the user) or `None` to create new latents.
 | 
						|
            media_items (`torch.FloatTensor` or `None`):
 | 
						|
                An image or video to be updated using img2img or vid2vid. The media item is encoded and noised.
 | 
						|
            timestep (`float`):
 | 
						|
                The timestep to noise the encoded media_items to.
 | 
						|
            latent_shape (`torch.Size`):
 | 
						|
                The target latent shape.
 | 
						|
            dtype (`torch.dtype`):
 | 
						|
                The target dtype.
 | 
						|
            device (`torch.device`):
 | 
						|
                The target device.
 | 
						|
            generator (`torch.Generator` or `List[torch.Generator]`):
 | 
						|
                Generator(s) to be used for the noising process.
 | 
						|
            vae_per_channel_normalize ('bool'):
 | 
						|
                When encoding the media_items, whether to normalize the latents per-channel.
 | 
						|
        Returns:
 | 
						|
            `torch.FloatTensor`: The latents to be used for the denoising process. This is a tensor of shape
 | 
						|
            (batch_size, num_channels, height, width).
 | 
						|
        """
 | 
						|
        if isinstance(generator, list) and len(generator) != latent_shape[0]:
 | 
						|
            raise ValueError(
 | 
						|
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
 | 
						|
                f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators."
 | 
						|
            )
 | 
						|
 | 
						|
        # Initialize the latents with the given latents or encoded media item, if provided
 | 
						|
        assert (
 | 
						|
            latents is None or media_items is None
 | 
						|
        ), "Cannot provide both latents and media_items. Please provide only one of the two."
 | 
						|
 | 
						|
        assert (
 | 
						|
            latents is None and media_items is None or timestep < 1.0
 | 
						|
        ), "Input media_item or latents are provided, but they will be replaced with noise."
 | 
						|
 | 
						|
        if media_items is not None:
 | 
						|
            latents = vae_encode(
 | 
						|
                media_items.to(dtype=self.vae.dtype, device=self.vae.device),
 | 
						|
                self.vae,
 | 
						|
                vae_per_channel_normalize=vae_per_channel_normalize,
 | 
						|
            )
 | 
						|
        if latents is not None:
 | 
						|
            assert (
 | 
						|
                latents.shape == latent_shape
 | 
						|
            ), f"Latents have to be of shape {latent_shape} but are {latents.shape}."
 | 
						|
            latents = latents.to(device=device, dtype=dtype)
 | 
						|
 | 
						|
        # For backward compatibility, generate in the "patchified" shape and rearrange
 | 
						|
        b, c, f, h, w = latent_shape
 | 
						|
        noise = randn_tensor(
 | 
						|
            (b, f * h * w, c), generator=generator, device=device, dtype=dtype
 | 
						|
        )
 | 
						|
        noise = rearrange(noise, "b (f h w) c -> b c f h w", f=f, h=h, w=w)
 | 
						|
 | 
						|
        # scale the initial noise by the standard deviation required by the scheduler
 | 
						|
        noise = noise * self.scheduler.init_noise_sigma
 | 
						|
 | 
						|
        if latents is None:
 | 
						|
            latents = noise
 | 
						|
        else:
 | 
						|
            # Noise the latents to the required (first) timestep
 | 
						|
            latents = timestep * noise + (1 - timestep) * latents
 | 
						|
 | 
						|
        return latents
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def classify_height_width_bin(
 | 
						|
        height: int, width: int, ratios: dict
 | 
						|
    ) -> Tuple[int, int]:
 | 
						|
        """Returns binned height and width."""
 | 
						|
        ar = float(height / width)
 | 
						|
        closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
 | 
						|
        default_hw = ratios[closest_ratio]
 | 
						|
        return int(default_hw[0]), int(default_hw[1])
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def resize_and_crop_tensor(
 | 
						|
        samples: torch.Tensor, new_width: int, new_height: int
 | 
						|
    ) -> torch.Tensor:
 | 
						|
        n_frames, orig_height, orig_width = samples.shape[-3:]
 | 
						|
 | 
						|
        # Check if resizing is needed
 | 
						|
        if orig_height != new_height or orig_width != new_width:
 | 
						|
            ratio = max(new_height / orig_height, new_width / orig_width)
 | 
						|
            resized_width = int(orig_width * ratio)
 | 
						|
            resized_height = int(orig_height * ratio)
 | 
						|
 | 
						|
            # Resize
 | 
						|
            samples = LTXVideoPipeline.resize_tensor(
 | 
						|
                samples, resized_height, resized_width
 | 
						|
            )
 | 
						|
 | 
						|
            # Center Crop
 | 
						|
            start_x = (resized_width - new_width) // 2
 | 
						|
            end_x = start_x + new_width
 | 
						|
            start_y = (resized_height - new_height) // 2
 | 
						|
            end_y = start_y + new_height
 | 
						|
            samples = samples[..., start_y:end_y, start_x:end_x]
 | 
						|
 | 
						|
        return samples
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def resize_tensor(media_items, height, width):
 | 
						|
        n_frames = media_items.shape[2]
 | 
						|
        if media_items.shape[-2:] != (height, width):
 | 
						|
            media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
 | 
						|
            media_items = F.interpolate(
 | 
						|
                media_items,
 | 
						|
                size=(height, width),
 | 
						|
                mode="bilinear",
 | 
						|
                align_corners=False,
 | 
						|
            )
 | 
						|
            media_items = rearrange(media_items, "(b n) c h w -> b c n h w", n=n_frames)
 | 
						|
        return media_items
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def __call__(
 | 
						|
        self,
 | 
						|
        height: int,
 | 
						|
        width: int,
 | 
						|
        num_frames: int,
 | 
						|
        frame_rate: float,
 | 
						|
        prompt: Union[str, List[str]] = None,
 | 
						|
        negative_prompt: str = None,
 | 
						|
        num_inference_steps: int = 20,
 | 
						|
        timesteps: List[int] = None,
 | 
						|
        guidance_scale: Union[float, List[float]] = 4.5,
 | 
						|
        skip_layer_strategy: Optional[SkipLayerStrategy] = None,
 | 
						|
        skip_block_list: Optional[Union[List[List[int]], List[int]]] = None,
 | 
						|
        stg_scale: Union[float, List[float]] = 1.0,
 | 
						|
        rescaling_scale: Union[float, List[float]] = 0.7,
 | 
						|
        guidance_timesteps: Optional[List[int]] = None,
 | 
						|
        num_images_per_prompt: Optional[int] = 1,
 | 
						|
        eta: float = 0.0,
 | 
						|
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
 | 
						|
        latents: Optional[torch.FloatTensor] = None,
 | 
						|
        prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        prompt_attention_mask: Optional[torch.FloatTensor] = None,
 | 
						|
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
 | 
						|
        output_type: Optional[str] = "pil",
 | 
						|
        return_dict: bool = True,
 | 
						|
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
 | 
						|
        conditioning_items: Optional[List[ConditioningItem]] = None,
 | 
						|
        decode_timestep: Union[List[float], float] = 0.0,
 | 
						|
        decode_noise_scale: Optional[List[float]] = None,
 | 
						|
        mixed_precision: bool = False,
 | 
						|
        offload_to_cpu: bool = False,
 | 
						|
        enhance_prompt: bool = False,
 | 
						|
        text_encoder_max_tokens: int = 256,
 | 
						|
        stochastic_sampling: bool = False,
 | 
						|
        media_items: Optional[torch.Tensor] = None,
 | 
						|
        tone_map_compression_ratio: float = 0.0,
 | 
						|
        strength: Optional[float] = 1.0,
 | 
						|
        skip_initial_inference_steps: int = 0,
 | 
						|
        skip_final_inference_steps: int = 0,        
 | 
						|
        joint_pass: bool = False,
 | 
						|
        pass_no: int = -1,
 | 
						|
        ltxv_model = None,
 | 
						|
        callback=None,
 | 
						|
        apg_switch = 0,
 | 
						|
        **kwargs,
 | 
						|
    ) -> Union[ImagePipelineOutput, Tuple]:
 | 
						|
        """
 | 
						|
        Function invoked when calling the pipeline for generation.
 | 
						|
 | 
						|
        Args:
 | 
						|
            prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
 | 
						|
                instead.
 | 
						|
            negative_prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
 | 
						|
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
 | 
						|
                less than `1`).
 | 
						|
            num_inference_steps (`int`, *optional*, defaults to 100):
 | 
						|
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
 | 
						|
                expense of slower inference. If `timesteps` is provided, this parameter is ignored.
 | 
						|
            timesteps (`List[int]`, *optional*):
 | 
						|
                Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
 | 
						|
                timesteps are used. Must be in descending order.
 | 
						|
            guidance_scale (`float`, *optional*, defaults to 4.5):
 | 
						|
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
 | 
						|
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
 | 
						|
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
 | 
						|
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
 | 
						|
                usually at the expense of lower image quality.
 | 
						|
            num_images_per_prompt (`int`, *optional*, defaults to 1):
 | 
						|
                The number of images to generate per prompt.
 | 
						|
            height (`int`, *optional*, defaults to self.unet.config.sample_size):
 | 
						|
                The height in pixels of the generated image.
 | 
						|
            width (`int`, *optional*, defaults to self.unet.config.sample_size):
 | 
						|
                The width in pixels of the generated image.
 | 
						|
            eta (`float`, *optional*, defaults to 0.0):
 | 
						|
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
 | 
						|
                [`schedulers.DDIMScheduler`], will be ignored for others.
 | 
						|
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
 | 
						|
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
 | 
						|
                to make generation deterministic.
 | 
						|
            latents (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
 | 
						|
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
 | 
						|
                tensor will ge generated by sampling using the supplied random `generator`.
 | 
						|
            prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
 | 
						|
                provided, text embeddings will be generated from `prompt` input argument.
 | 
						|
            prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
 | 
						|
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated negative text embeddings. This negative prompt should be "". If not
 | 
						|
                provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
 | 
						|
            negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
 | 
						|
                Pre-generated attention mask for negative text embeddings.
 | 
						|
            output_type (`str`, *optional*, defaults to `"pil"`):
 | 
						|
                The output format of the generate image. Choose between
 | 
						|
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
 | 
						|
            return_dict (`bool`, *optional*, defaults to `True`):
 | 
						|
                Whether to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
 | 
						|
            callback_on_step_end (`Callable`, *optional*):
 | 
						|
                A function that calls at the end of each denoising steps during the inference. The function is called
 | 
						|
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
 | 
						|
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
 | 
						|
                `callback_on_step_end_tensor_inputs`.
 | 
						|
            use_resolution_binning (`bool` defaults to `True`):
 | 
						|
                If set to `True`, the requested height and width are first mapped to the closest resolutions using
 | 
						|
                `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
 | 
						|
                the requested resolution. Useful for generating non-square images.
 | 
						|
            enhance_prompt (`bool`, *optional*, defaults to `False`):
 | 
						|
                If set to `True`, the prompt is enhanced using a LLM model.
 | 
						|
            text_encoder_max_tokens (`int`, *optional*, defaults to `256`):
 | 
						|
                The maximum number of tokens to use for the text encoder.
 | 
						|
            stochastic_sampling (`bool`, *optional*, defaults to `False`):
 | 
						|
                If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic.
 | 
						|
            media_items ('torch.Tensor', *optional*):
 | 
						|
                The input media item used for image-to-image / video-to-video.
 | 
						|
                When provided, they will be noised according to 'strength' and then fully denoised.
 | 
						|
            tone_map_compression_ratio: compression ratio for tone mapping, defaults to 0.0.
 | 
						|
                If set to 0.0, no tone mapping is applied. If set to 1.0 - full compression is applied.                
 | 
						|
            strength ('floaty', *optional* defaults to 1.0):
 | 
						|
                The editing level in image-to-image / video-to-video. The provided input will be noised
 | 
						|
                to this level.
 | 
						|
        Examples:
 | 
						|
 | 
						|
        Returns:
 | 
						|
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
 | 
						|
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
 | 
						|
                returned where the first element is a list with the generated images
 | 
						|
        """
 | 
						|
        if "mask_feature" in kwargs:
 | 
						|
            deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
 | 
						|
            deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
 | 
						|
 | 
						|
        is_video = kwargs.get("is_video", False)
 | 
						|
        self.check_inputs(
 | 
						|
            prompt,
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            negative_prompt,
 | 
						|
            prompt_embeds,
 | 
						|
            negative_prompt_embeds,
 | 
						|
            prompt_attention_mask,
 | 
						|
            negative_prompt_attention_mask,
 | 
						|
        )
 | 
						|
 | 
						|
        # 2. Default height and width to transformer
 | 
						|
        if prompt is not None and isinstance(prompt, str):
 | 
						|
            batch_size = 1
 | 
						|
        elif prompt is not None and isinstance(prompt, list):
 | 
						|
            batch_size = len(prompt)
 | 
						|
        else:
 | 
						|
            batch_size = prompt_embeds.shape[0]
 | 
						|
 | 
						|
        device = self._execution_device
 | 
						|
 | 
						|
        self.video_scale_factor = self.video_scale_factor if is_video else 1
 | 
						|
        vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", True)
 | 
						|
        image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0)
 | 
						|
 | 
						|
        latent_height = height // self.vae_scale_factor
 | 
						|
        latent_width = width // self.vae_scale_factor
 | 
						|
        latent_num_frames = num_frames // self.video_scale_factor
 | 
						|
        if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
 | 
						|
            latent_num_frames += 1
 | 
						|
        latent_shape = (
 | 
						|
            batch_size * num_images_per_prompt,
 | 
						|
            self.transformer.config.in_channels,
 | 
						|
            latent_num_frames,
 | 
						|
            latent_height,
 | 
						|
            latent_width,
 | 
						|
        )
 | 
						|
 | 
						|
        # Prepare the list of denoising time-steps
 | 
						|
 | 
						|
        retrieve_timesteps_kwargs = {}
 | 
						|
        if isinstance(self.scheduler, TimestepShifter):
 | 
						|
            retrieve_timesteps_kwargs["samples_shape"] = latent_shape
 | 
						|
 | 
						|
        assert strength == 1.0 or latents is not None or media_items is not None, (
 | 
						|
            "strength < 1 is used for image-to-image/video-to-video - "
 | 
						|
            "media_item or latents should be provided."
 | 
						|
        )
 | 
						|
 | 
						|
        timesteps, num_inference_steps = retrieve_timesteps(
 | 
						|
            self.scheduler,
 | 
						|
            num_inference_steps,
 | 
						|
            device,
 | 
						|
            timesteps,
 | 
						|
            max_timestep=strength,
 | 
						|
            skip_initial_inference_steps=skip_initial_inference_steps,
 | 
						|
            skip_final_inference_steps=skip_final_inference_steps,            
 | 
						|
            **retrieve_timesteps_kwargs,
 | 
						|
        )
 | 
						|
        if self.allowed_inference_steps is not None:
 | 
						|
            for timestep in [round(x, 4) for x in timesteps.tolist()]:
 | 
						|
                assert (
 | 
						|
                    timestep in self.allowed_inference_steps
 | 
						|
                ), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}."
 | 
						|
 | 
						|
        if guidance_timesteps:
 | 
						|
            guidance_mapping = []
 | 
						|
            for timestep in timesteps:
 | 
						|
                indices = [
 | 
						|
                    i for i, val in enumerate(guidance_timesteps) if val <= timestep
 | 
						|
                ]
 | 
						|
                # assert len(indices) > 0, f"No guidance timestep found for {timestep}"
 | 
						|
                guidance_mapping.append(
 | 
						|
                    indices[0] if len(indices) > 0 else (len(guidance_timesteps) - 1)
 | 
						|
                )
 | 
						|
 | 
						|
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
 | 
						|
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
 | 
						|
        # corresponds to doing no classifier free guidance.
 | 
						|
        if not isinstance(guidance_scale, List):
 | 
						|
            guidance_scale = [guidance_scale] * len(timesteps)
 | 
						|
        else:
 | 
						|
            guidance_scale = [
 | 
						|
                guidance_scale[guidance_mapping[i]] for i in range(len(timesteps))
 | 
						|
            ]
 | 
						|
 | 
						|
        # For simplicity, we are using a constant num_conds for all timesteps, so we need to zero
 | 
						|
        # out cases where the guidance scale should not be applied.
 | 
						|
        guidance_scale = [x if x > 1.0 else 0.0 for x in guidance_scale]
 | 
						|
 | 
						|
        if not isinstance(stg_scale, List):
 | 
						|
            stg_scale = [stg_scale] * len(timesteps)
 | 
						|
        else:
 | 
						|
            stg_scale = [stg_scale[guidance_mapping[i]] for i in range(len(timesteps))]
 | 
						|
 | 
						|
        if not isinstance(rescaling_scale, List):
 | 
						|
            rescaling_scale = [rescaling_scale] * len(timesteps)
 | 
						|
        else:
 | 
						|
            rescaling_scale = [
 | 
						|
                rescaling_scale[guidance_mapping[i]] for i in range(len(timesteps))
 | 
						|
            ]
 | 
						|
 | 
						|
        do_classifier_free_guidance = any(x > 1.0 for x in guidance_scale)
 | 
						|
        do_spatio_temporal_guidance = any(x > 0.0 for x in stg_scale)
 | 
						|
        do_rescaling = any(x != 1.0 for x in rescaling_scale)
 | 
						|
 | 
						|
        num_conds = 1
 | 
						|
        if do_classifier_free_guidance:
 | 
						|
            num_conds += 1
 | 
						|
        if do_spatio_temporal_guidance:
 | 
						|
            num_conds += 1
 | 
						|
 | 
						|
        # Normalize skip_block_list to always be None or a list of lists matching timesteps
 | 
						|
        if skip_block_list is not None:
 | 
						|
            # Convert single list to list of lists if needed
 | 
						|
            if len(skip_block_list) == 0 or not isinstance(skip_block_list[0], list):
 | 
						|
                skip_block_list = [skip_block_list] * len(timesteps)
 | 
						|
            else:
 | 
						|
                new_skip_block_list = []
 | 
						|
                for i, timestep in enumerate(timesteps):
 | 
						|
                    new_skip_block_list.append(skip_block_list[guidance_mapping[i]])
 | 
						|
                skip_block_list = new_skip_block_list
 | 
						|
 | 
						|
        # Prepare skip layer masks
 | 
						|
        skip_layer_masks: Optional[List[torch.Tensor]] = None
 | 
						|
        if do_spatio_temporal_guidance:
 | 
						|
            if skip_block_list is not None:
 | 
						|
                skip_layer_masks = [
 | 
						|
                    self.transformer.create_skip_layer_mask(
 | 
						|
                        batch_size, num_conds, num_conds - 1, skip_blocks
 | 
						|
                    )
 | 
						|
                    for skip_blocks in skip_block_list
 | 
						|
                ]
 | 
						|
 | 
						|
 | 
						|
        # if offload_to_cpu and self.text_encoder is not None:
 | 
						|
        #     self.text_encoder = self.text_encoder.cpu()
 | 
						|
 | 
						|
        # self.transformer = self.transformer.to(self._execution_device)
 | 
						|
 | 
						|
        prompt_embeds_batch = prompt_embeds
 | 
						|
        prompt_attention_mask_batch = prompt_attention_mask
 | 
						|
        if do_classifier_free_guidance:
 | 
						|
            prompt_embeds_batch = torch.cat(
 | 
						|
                [negative_prompt_embeds, prompt_embeds], dim=0
 | 
						|
            )
 | 
						|
            prompt_attention_mask_batch = torch.cat(
 | 
						|
                [negative_prompt_attention_mask.to("cuda"), prompt_attention_mask], dim=0
 | 
						|
            )
 | 
						|
        if do_spatio_temporal_guidance:
 | 
						|
            prompt_embeds_batch = torch.cat([prompt_embeds_batch, prompt_embeds], dim=0)
 | 
						|
            prompt_attention_mask_batch = torch.cat(
 | 
						|
                [
 | 
						|
                    prompt_attention_mask_batch,
 | 
						|
                    prompt_attention_mask,
 | 
						|
                ],
 | 
						|
                dim=0,
 | 
						|
            )
 | 
						|
 | 
						|
        # 4. Prepare the initial latents using the provided media and conditioning items
 | 
						|
 | 
						|
        # Prepare the initial latents tensor, shape = (b, c, f, h, w)
 | 
						|
        latents = self.prepare_latents(
 | 
						|
            latents=latents,
 | 
						|
            media_items=media_items,
 | 
						|
            timestep=timesteps[0],
 | 
						|
            latent_shape=latent_shape,
 | 
						|
            dtype=torch.float32 if mixed_precision else prompt_embeds_batch.dtype,
 | 
						|
            device=device,
 | 
						|
            generator=generator,
 | 
						|
            vae_per_channel_normalize=vae_per_channel_normalize,
 | 
						|
        )
 | 
						|
 | 
						|
        # Update the latents with the conditioning items and patchify them into (b, n, c)
 | 
						|
        latents, pixel_coords, conditioning_mask, num_cond_latents = (
 | 
						|
            self.prepare_conditioning(
 | 
						|
                conditioning_items=conditioning_items,
 | 
						|
                init_latents=latents,
 | 
						|
                num_frames=num_frames,
 | 
						|
                height=height,
 | 
						|
                width=width,
 | 
						|
                vae_per_channel_normalize=vae_per_channel_normalize,
 | 
						|
                generator=generator,
 | 
						|
            )
 | 
						|
        )
 | 
						|
        init_latents = latents.clone()  # Used for image_cond_noise_update
 | 
						|
        if conditioning_items is not None and len(conditioning_items) > 0 and not conditioning_items[0].control_frames and conditioning_items[0].media_frame_number == 0:
 | 
						|
            prefix_latent_frames = (conditioning_items[0].media_item.shape[2] - 1)// 8 + 1
 | 
						|
        else:
 | 
						|
            prefix_latent_frames = 0
 | 
						|
        # pixel_coords = torch.cat([pixel_coords] * num_conds)
 | 
						|
        orig_conditioning_mask = conditioning_mask
 | 
						|
        if conditioning_mask is not None and is_video:
 | 
						|
            assert num_images_per_prompt == 1
 | 
						|
            conditioning_mask = torch.cat([conditioning_mask] * num_conds)
 | 
						|
        fractional_coords = pixel_coords.to(torch.float32)
 | 
						|
        fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
 | 
						|
        freqs_cis = self.transformer.precompute_freqs_cis(fractional_coords)
 | 
						|
 | 
						|
        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
 | 
						|
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
 | 
						|
 | 
						|
        # 7. Denoising loop
 | 
						|
        num_warmup_steps = max(
 | 
						|
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
 | 
						|
        )
 | 
						|
        cfg_star_rescale = True
 | 
						|
 | 
						|
        if apg_switch != 0:  
 | 
						|
            apg_momentum = -0.75
 | 
						|
            apg_norm_threshold = 55
 | 
						|
            text_momentumbuffer  = MomentumBuffer(apg_momentum) 
 | 
						|
            audio_momentumbuffer = MomentumBuffer(apg_momentum) 
 | 
						|
 | 
						|
 | 
						|
        if callback != None:
 | 
						|
            callback(-1, None, True, override_num_inference_steps = num_inference_steps, pass_no =pass_no)
 | 
						|
 | 
						|
        with self.progress_bar(total=num_inference_steps) as progress_bar:
 | 
						|
            for i, t in enumerate(timesteps):
 | 
						|
                if conditioning_mask is not None and image_cond_noise_scale > 0.0:
 | 
						|
                    latents = self.add_noise_to_image_conditioning_latents(
 | 
						|
                        t,
 | 
						|
                        init_latents,
 | 
						|
                        latents,
 | 
						|
                        image_cond_noise_scale,
 | 
						|
                        orig_conditioning_mask,
 | 
						|
                        generator,
 | 
						|
                    )
 | 
						|
 | 
						|
                latent_model_input = (
 | 
						|
                        torch.cat([latents] * num_conds) if num_conds > 1 else latents
 | 
						|
                )
 | 
						|
                latent_model_input = self.scheduler.scale_model_input(
 | 
						|
                    latent_model_input, t
 | 
						|
                )
 | 
						|
 | 
						|
                current_timestep = t
 | 
						|
                if not torch.is_tensor(current_timestep):
 | 
						|
                    # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
 | 
						|
                    # This would be a good case for the `match` statement (Python 3.10+)
 | 
						|
                    is_mps = latent_model_input.device.type == "mps"
 | 
						|
                    if isinstance(current_timestep, float):
 | 
						|
                        dtype = torch.float32 if is_mps else torch.float64
 | 
						|
                    else:
 | 
						|
                        dtype = torch.int32 if is_mps else torch.int64
 | 
						|
                    current_timestep = torch.tensor(
 | 
						|
                        [current_timestep],
 | 
						|
                        dtype=dtype,
 | 
						|
                        device=latent_model_input.device,
 | 
						|
                    )
 | 
						|
                elif len(current_timestep.shape) == 0:
 | 
						|
                    current_timestep = current_timestep[None].to(
 | 
						|
                        latent_model_input.device
 | 
						|
                    )
 | 
						|
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
 | 
						|
                current_timestep = current_timestep.expand(
 | 
						|
                    latent_model_input.shape[0]
 | 
						|
                ).unsqueeze(-1)
 | 
						|
 | 
						|
                if conditioning_mask is not None:
 | 
						|
                    # Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
 | 
						|
                    # and will start to be denoised when the current timestep is lower than their conditioning timestep.
 | 
						|
                    current_timestep = torch.min(
 | 
						|
                        current_timestep, 1.0 - conditioning_mask
 | 
						|
                    )
 | 
						|
 | 
						|
                # Choose the appropriate context manager based on `mixed_precision`
 | 
						|
                if mixed_precision:
 | 
						|
                    context_manager = torch.autocast(device.type, dtype=self.transformer.dtype)
 | 
						|
                else:
 | 
						|
                    context_manager = nullcontext()  # Dummy context manager
 | 
						|
 | 
						|
                # predict noise model_output
 | 
						|
                with context_manager:
 | 
						|
                    noise_pred = self.transformer(
 | 
						|
                        latent_model_input.to(self.transformer.dtype),
 | 
						|
                        freqs_cis=freqs_cis,
 | 
						|
                        encoder_hidden_states=prompt_embeds_batch.to(
 | 
						|
                            self.transformer.dtype
 | 
						|
                        ),
 | 
						|
                        encoder_attention_mask=prompt_attention_mask_batch,
 | 
						|
                        timestep=current_timestep,
 | 
						|
                        skip_layer_mask=(
 | 
						|
                            skip_layer_masks[i]
 | 
						|
                            if skip_layer_masks is not None
 | 
						|
                            else None
 | 
						|
                        ),
 | 
						|
                        skip_layer_strategy=skip_layer_strategy,
 | 
						|
                        latent_shape = latent_shape[2:],
 | 
						|
                        joint_pass = joint_pass,
 | 
						|
                        ltxv_model = ltxv_model,
 | 
						|
                        mixed = mixed_precision,
 | 
						|
                        return_dict=False,
 | 
						|
                    )[0]
 | 
						|
                if noise_pred == None:
 | 
						|
                    return None
 | 
						|
                # perform guidance
 | 
						|
                if do_spatio_temporal_guidance:
 | 
						|
                    noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(
 | 
						|
                        num_conds
 | 
						|
                    )[-2:]
 | 
						|
                if do_classifier_free_guidance and guidance_scale[i] !=0 and guidance_scale[i] !=1 :
 | 
						|
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2]
 | 
						|
 | 
						|
                    if apg_switch != 0:
 | 
						|
                        noise_pred = noise_pred_text + (guidance_scale[i] - 1) * adaptive_projected_guidance(noise_pred_text - noise_pred_uncond, 
 | 
						|
                                                                                                        noise_pred_text, 
 | 
						|
                                                                                                        momentum_buffer=text_momentumbuffer, 
 | 
						|
                                                                                                        norm_threshold=apg_norm_threshold)
 | 
						|
 | 
						|
                    else:
 | 
						|
                        if cfg_star_rescale:
 | 
						|
                            batch_size = noise_pred_text.shape[0]
 | 
						|
 | 
						|
                            positive_flat = noise_pred_text.view(batch_size, -1)
 | 
						|
                            negative_flat = noise_pred_uncond.view(batch_size, -1)
 | 
						|
                            dot_product = torch.sum(
 | 
						|
                                positive_flat * negative_flat, dim=1, keepdim=True
 | 
						|
                            )
 | 
						|
                            squared_norm = torch.sum(negative_flat**2, dim=1, keepdim=True) + 1e-8
 | 
						|
                            alpha = dot_product / squared_norm
 | 
						|
                            noise_pred_uncond = alpha * noise_pred_uncond
 | 
						|
 | 
						|
 | 
						|
                        noise_pred = noise_pred_uncond + guidance_scale[i] * (
 | 
						|
                            noise_pred_text - noise_pred_uncond
 | 
						|
                        )
 | 
						|
                elif do_spatio_temporal_guidance:
 | 
						|
                    noise_pred = noise_pred_text
 | 
						|
                if do_spatio_temporal_guidance:
 | 
						|
                    noise_pred = noise_pred + stg_scale[i] * (
 | 
						|
                        noise_pred_text - noise_pred_text_perturb
 | 
						|
                    )
 | 
						|
                    if do_rescaling and stg_scale[i] > 0.0:
 | 
						|
                        noise_pred_text_std = noise_pred_text.view(batch_size, -1).std(
 | 
						|
                            dim=1, keepdim=True
 | 
						|
                        )
 | 
						|
                        noise_pred_std = noise_pred.view(batch_size, -1).std(
 | 
						|
                            dim=1, keepdim=True
 | 
						|
                        )
 | 
						|
 | 
						|
                        factor = noise_pred_text_std / noise_pred_std
 | 
						|
                        factor = rescaling_scale[i] * factor + (1 - rescaling_scale[i])
 | 
						|
 | 
						|
                        noise_pred = noise_pred * factor.view(batch_size, 1, 1)
 | 
						|
 | 
						|
                current_timestep = current_timestep[:1]
 | 
						|
                # learned sigma
 | 
						|
                if (
 | 
						|
                    self.transformer.config.out_channels // 2
 | 
						|
                    == self.transformer.config.in_channels
 | 
						|
                ):
 | 
						|
                    noise_pred = noise_pred.chunk(2, dim=1)[0]
 | 
						|
 | 
						|
                # compute previous image: x_t -> x_t-1
 | 
						|
                latents = self.denoising_step(
 | 
						|
                    latents,
 | 
						|
                    noise_pred,
 | 
						|
                    current_timestep,
 | 
						|
                    orig_conditioning_mask,
 | 
						|
                    t,
 | 
						|
                    extra_step_kwargs,
 | 
						|
                    stochastic_sampling=stochastic_sampling,
 | 
						|
                )
 | 
						|
 | 
						|
                if callback is not None:
 | 
						|
                    # callback(i, None, False, pass_no =pass_no)
 | 
						|
                    preview_latents= latents[:, num_cond_latents:].squeeze(0).transpose(0, 1)
 | 
						|
                    preview_latents= preview_latents.reshape(preview_latents.shape[0], latent_num_frames, latent_height, latent_width) 
 | 
						|
                    callback(i, preview_latents, False, pass_no =pass_no)
 | 
						|
                    preview_latents = None
 | 
						|
                # call the callback, if provided
 | 
						|
                if i == len(timesteps) - 1 or (
 | 
						|
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
 | 
						|
                ):
 | 
						|
                    progress_bar.update()
 | 
						|
 | 
						|
                if callback_on_step_end is not None:
 | 
						|
                    callback_on_step_end(self, i, t, {})
 | 
						|
 | 
						|
 | 
						|
        # Remove the added conditioning latents
 | 
						|
        latents = latents[:, num_cond_latents:]
 | 
						|
 | 
						|
        latents = self.patchifier.unpatchify(
 | 
						|
            latents=latents,
 | 
						|
            output_height=latent_height,
 | 
						|
            output_width=latent_width,
 | 
						|
            out_channels=self.transformer.in_channels
 | 
						|
            // math.prod(self.patchifier.patch_size),
 | 
						|
        )
 | 
						|
        if output_type != "latent":
 | 
						|
            if self.vae.decoder.timestep_conditioning:
 | 
						|
                noise = torch.randn_like(latents)
 | 
						|
                if not isinstance(decode_timestep, list):
 | 
						|
                    decode_timestep = [decode_timestep] * latents.shape[0]
 | 
						|
                if decode_noise_scale is None:
 | 
						|
                    decode_noise_scale = decode_timestep
 | 
						|
                elif not isinstance(decode_noise_scale, list):
 | 
						|
                    decode_noise_scale = [decode_noise_scale] * latents.shape[0]
 | 
						|
 | 
						|
                decode_timestep = torch.tensor(decode_timestep).to(latents.device)
 | 
						|
                decode_noise_scale = torch.tensor(decode_noise_scale).to(
 | 
						|
                    latents.device
 | 
						|
                )[:, None, None, None, None]
 | 
						|
                latents = (
 | 
						|
                    latents * (1 - decode_noise_scale) + noise * decode_noise_scale
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                decode_timestep = None
 | 
						|
            # torch.save(latents, "lala.pt")
 | 
						|
            # latents = torch.load("lala.pt")
 | 
						|
            latents = self.tone_map_latents(latents, tone_map_compression_ratio, start = prefix_latent_frames)            
 | 
						|
            image = vae_decode(
 | 
						|
                latents,
 | 
						|
                self.vae,
 | 
						|
                is_video,
 | 
						|
                vae_per_channel_normalize=kwargs["vae_per_channel_normalize"],
 | 
						|
                timestep=decode_timestep,
 | 
						|
            )
 | 
						|
 | 
						|
            image = self.image_processor.postprocess(image, output_type=output_type)
 | 
						|
 | 
						|
        else:
 | 
						|
            image = latents
 | 
						|
 | 
						|
 | 
						|
        if not return_dict:
 | 
						|
            return (image,)
 | 
						|
 | 
						|
        return image
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def tone_map_latents(
 | 
						|
        latents: torch.Tensor,
 | 
						|
        compression: float,
 | 
						|
        start: int = 0
 | 
						|
    ) -> torch.Tensor:
 | 
						|
        """
 | 
						|
        Applies a non-linear tone-mapping function to latent values to reduce their dynamic range
 | 
						|
        in a perceptually smooth way using a sigmoid-based compression.
 | 
						|
 | 
						|
        This is useful for regularizing high-variance latents or for conditioning outputs
 | 
						|
        during generation, especially when controlling dynamic behavior with a `compression` factor.
 | 
						|
 | 
						|
        Parameters:
 | 
						|
        ----------
 | 
						|
        latents : torch.Tensor
 | 
						|
            Input latent tensor with arbitrary shape. Expected to be roughly in [-1, 1] or [0, 1] range.
 | 
						|
        compression : float
 | 
						|
            Compression strength in the range [0, 1].
 | 
						|
            - 0.0: No tone-mapping (identity transform)
 | 
						|
            - 1.0: Full compression effect
 | 
						|
 | 
						|
        Returns:
 | 
						|
        -------
 | 
						|
        torch.Tensor
 | 
						|
            The tone-mapped latent tensor of the same shape as input.
 | 
						|
        """
 | 
						|
        if compression ==0:
 | 
						|
            return latents
 | 
						|
        if not (0 <= compression <= 1):
 | 
						|
            raise ValueError("Compression must be in the range [0, 1]")
 | 
						|
 | 
						|
        # Remap [0-1] to [0-0.75] and apply sigmoid compression in one shot
 | 
						|
        scale_factor = compression * 0.75
 | 
						|
        abs_latents = torch.abs(latents)
 | 
						|
 | 
						|
        # Sigmoid compression: sigmoid shifts large values toward 0.2, small values stay ~1.0
 | 
						|
        # When scale_factor=0, sigmoid term vanishes, when scale_factor=0.75, full effect
 | 
						|
        sigmoid_term = torch.sigmoid(4.0 * scale_factor * (abs_latents - 1.0))
 | 
						|
        # DeepBeepMeep special touch to allow a smooth transition with tone mapping
 | 
						|
        if start > 0:
 | 
						|
            gradient_tensor = torch.linspace(0, 1, latents.shape[2])
 | 
						|
            gradient_tensor = gradient_tensor ** 0.5
 | 
						|
            gradient_tensor = gradient_tensor[ None, None, :, None, None ]
 | 
						|
            sigmoid_term *= gradient_tensor
 | 
						|
        scales = 1.0 - 0.8 * scale_factor * sigmoid_term
 | 
						|
 | 
						|
 | 
						|
        filtered = latents * scales
 | 
						|
        return filtered
 | 
						|
 | 
						|
    def denoising_step(
 | 
						|
        self,
 | 
						|
        latents: torch.Tensor,
 | 
						|
        noise_pred: torch.Tensor,
 | 
						|
        current_timestep: torch.Tensor,
 | 
						|
        conditioning_mask: torch.Tensor,
 | 
						|
        t: float,
 | 
						|
        extra_step_kwargs,
 | 
						|
        t_eps=1e-6,
 | 
						|
        stochastic_sampling=False,
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Perform the denoising step for the required tokens, based on the current timestep and
 | 
						|
        conditioning mask:
 | 
						|
        Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
 | 
						|
        and will start to be denoised when the current timestep is equal or lower than their
 | 
						|
        conditioning timestep.
 | 
						|
        (hard-conditioning latents with conditioning_mask = 1.0 are never denoised)
 | 
						|
        """
 | 
						|
        # Denoise the latents using the scheduler
 | 
						|
        denoised_latents = self.scheduler.step(
 | 
						|
            noise_pred,
 | 
						|
            t if current_timestep is None else current_timestep,
 | 
						|
            latents,
 | 
						|
            **extra_step_kwargs,
 | 
						|
            return_dict=False,
 | 
						|
            stochastic_sampling=stochastic_sampling,
 | 
						|
        )[0]
 | 
						|
 | 
						|
        if conditioning_mask is None:
 | 
						|
            return denoised_latents
 | 
						|
 | 
						|
        tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1)
 | 
						|
        return torch.where(tokens_to_denoise_mask, denoised_latents, latents)
 | 
						|
 | 
						|
    def prepare_conditioning(
 | 
						|
        self,
 | 
						|
        conditioning_items: Optional[List[ConditioningItem]],
 | 
						|
        init_latents: torch.Tensor,
 | 
						|
        num_frames: int,
 | 
						|
        height: int,
 | 
						|
        width: int,
 | 
						|
        vae_per_channel_normalize: bool = False,
 | 
						|
        generator=None,
 | 
						|
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
 | 
						|
        """
 | 
						|
        Prepare conditioning tokens based on the provided conditioning items.
 | 
						|
 | 
						|
        This method encodes provided conditioning items (video frames or single frames) into latents
 | 
						|
        and integrates them with the initial latent tensor. It also calculates corresponding pixel
 | 
						|
        coordinates, a mask indicating the influence of conditioning latents, and the total number of
 | 
						|
        conditioning latents.
 | 
						|
 | 
						|
        Args:
 | 
						|
            conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects.
 | 
						|
            init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where
 | 
						|
                `f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions.
 | 
						|
            num_frames, height, width: The dimensions of the generated video.
 | 
						|
            vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding.
 | 
						|
                Defaults to `False`.
 | 
						|
            generator: The random generator
 | 
						|
 | 
						|
        Returns:
 | 
						|
            Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
 | 
						|
                - `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents,
 | 
						|
                  patchified into (b, n, c) shape.
 | 
						|
                - `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated
 | 
						|
                  latent tensor.
 | 
						|
                - `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each
 | 
						|
                  latent token.
 | 
						|
                - `num_cond_latents` (int): The total number of latent tokens added from conditioning items.
 | 
						|
 | 
						|
        Raises:
 | 
						|
            AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid.
 | 
						|
        """
 | 
						|
        assert isinstance(self.vae, CausalVideoAutoencoder)
 | 
						|
 | 
						|
        if conditioning_items:
 | 
						|
            batch_size, _, num_latent_frames = init_latents.shape[:3]
 | 
						|
 | 
						|
            init_conditioning_mask = torch.zeros(
 | 
						|
                init_latents[:, 0, :, :, :].shape,
 | 
						|
                dtype=torch.float32,
 | 
						|
                device=init_latents.device,
 | 
						|
            )
 | 
						|
 | 
						|
            extra_conditioning_latents = []
 | 
						|
            extra_conditioning_pixel_coords = []
 | 
						|
            extra_conditioning_mask = []
 | 
						|
            extra_conditioning_num_latents = 0  # Number of extra conditioning latents added (should be removed before decoding)
 | 
						|
 | 
						|
            # Process each conditioning item
 | 
						|
            for conditioning_item in conditioning_items:
 | 
						|
                conditioning_item = self._resize_conditioning_item(
 | 
						|
                    conditioning_item, height, width
 | 
						|
                )
 | 
						|
                media_item = conditioning_item.media_item
 | 
						|
                media_frame_number = conditioning_item.media_frame_number
 | 
						|
                strength = conditioning_item.conditioning_strength
 | 
						|
                control_frames = conditioning_item.control_frames
 | 
						|
                assert media_item.ndim == 5  # (b, c, f, h, w)
 | 
						|
                b, c, n_frames, h, w = media_item.shape
 | 
						|
                assert (
 | 
						|
                    height == h and width == w
 | 
						|
                ) or media_frame_number == 0, f"Dimensions do not match: {height}x{width} != {h}x{w} - allowed only when media_frame_number == 0"
 | 
						|
                # assert n_frames % 8 == 1
 | 
						|
                # assert (
 | 
						|
                #     media_frame_number >= 0
 | 
						|
                #     and media_frame_number + n_frames <= num_frames
 | 
						|
                # )
 | 
						|
 | 
						|
                media_item_latents = vae_encode(
 | 
						|
                    media_item.to(dtype=self.vae.dtype, device=self.vae.device),
 | 
						|
                    self.vae,
 | 
						|
                    vae_per_channel_normalize=vae_per_channel_normalize,
 | 
						|
                ).to(dtype=init_latents.dtype)
 | 
						|
 | 
						|
                # Handle the different conditioning cases
 | 
						|
                if control_frames:
 | 
						|
                    #control frames sequence is assumed to start one frame before the actual location so that we can properly insert the prefix latent
 | 
						|
                    if media_frame_number > 0:
 | 
						|
                        media_frame_number = media_frame_number -1
 | 
						|
                    media_item_latents, media_latent_coords = self.patchifier.patchify(
 | 
						|
                        latents=media_item_latents
 | 
						|
                    )
 | 
						|
                    media_pixel_coords = latent_to_pixel_coords(
 | 
						|
                        media_latent_coords,
 | 
						|
                        self.vae,
 | 
						|
                        causal_fix=self.transformer.config.causal_temporal_positioning,
 | 
						|
                    )
 | 
						|
 | 
						|
                    media_conditioning_mask = torch.full(
 | 
						|
                        media_item_latents.shape[:2],
 | 
						|
                        strength,
 | 
						|
                        dtype=torch.float32,
 | 
						|
                        device=init_latents.device,
 | 
						|
                    )
 | 
						|
 | 
						|
                    # Update the frame numbers to match the target frame number
 | 
						|
                    media_pixel_coords[:, 0] += media_frame_number
 | 
						|
                    extra_conditioning_num_latents += media_item_latents.shape[1]
 | 
						|
                    extra_conditioning_latents.append(media_item_latents)
 | 
						|
                    extra_conditioning_pixel_coords.append(media_pixel_coords)
 | 
						|
                    extra_conditioning_mask.append(media_conditioning_mask)
 | 
						|
                elif media_frame_number == 0:
 | 
						|
                    # Get the target spatial position of the latent conditioning item
 | 
						|
                    media_item_latents, l_x, l_y = self._get_latent_spatial_position(
 | 
						|
                        media_item_latents,
 | 
						|
                        conditioning_item,
 | 
						|
                        height,
 | 
						|
                        width,
 | 
						|
                        strip_latent_border=True,
 | 
						|
                    )
 | 
						|
                    b, c_l, f_l, h_l, w_l = media_item_latents.shape
 | 
						|
 | 
						|
                    # First frame or sequence - just update the initial noise latents and the mask
 | 
						|
                    init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l] = (
 | 
						|
                        torch.lerp(
 | 
						|
                            init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l],
 | 
						|
                            media_item_latents,
 | 
						|
                            strength,
 | 
						|
                        )
 | 
						|
                    )
 | 
						|
                    init_conditioning_mask[
 | 
						|
                        :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l
 | 
						|
                    ] = strength
 | 
						|
                else:
 | 
						|
                    # Non-first frame or sequence
 | 
						|
                    if n_frames > 1:
 | 
						|
                        # Handle non-first sequence.
 | 
						|
                        # Encoded latents are either fully consumed, or the prefix is handled separately below.
 | 
						|
                        (
 | 
						|
                            init_latents,
 | 
						|
                            init_conditioning_mask,
 | 
						|
                            media_item_latents,
 | 
						|
                        ) = self._handle_non_first_conditioning_sequence(
 | 
						|
                            init_latents,
 | 
						|
                            init_conditioning_mask,
 | 
						|
                            media_item_latents,
 | 
						|
                            media_frame_number,
 | 
						|
                            strength,
 | 
						|
                        )
 | 
						|
 | 
						|
                    # Single frame or sequence-prefix latents
 | 
						|
                    if media_item_latents is not None:
 | 
						|
                        noise = randn_tensor(
 | 
						|
                            media_item_latents.shape,
 | 
						|
                            generator=generator,
 | 
						|
                            device=media_item_latents.device,
 | 
						|
                            dtype=media_item_latents.dtype,
 | 
						|
                        )
 | 
						|
 | 
						|
                        media_item_latents = torch.lerp(
 | 
						|
                            noise, media_item_latents, strength
 | 
						|
                        )
 | 
						|
 | 
						|
                        # Patchify the extra conditioning latents and calculate their pixel coordinates
 | 
						|
                        media_item_latents, latent_coords = self.patchifier.patchify(
 | 
						|
                            latents=media_item_latents
 | 
						|
                        )
 | 
						|
                        pixel_coords = latent_to_pixel_coords(
 | 
						|
                            latent_coords,
 | 
						|
                            self.vae,
 | 
						|
                            causal_fix=self.transformer.config.causal_temporal_positioning,
 | 
						|
                        )
 | 
						|
 | 
						|
                        # Update the frame numbers to match the target frame number
 | 
						|
                        pixel_coords[:, 0] += media_frame_number
 | 
						|
                        extra_conditioning_num_latents += media_item_latents.shape[1]
 | 
						|
 | 
						|
                        conditioning_mask = torch.full(
 | 
						|
                            media_item_latents.shape[:2],
 | 
						|
                            strength,
 | 
						|
                            dtype=torch.float32,
 | 
						|
                            device=init_latents.device,
 | 
						|
                        )
 | 
						|
 | 
						|
                        extra_conditioning_latents.append(media_item_latents)
 | 
						|
                        extra_conditioning_pixel_coords.append(pixel_coords)
 | 
						|
                        extra_conditioning_mask.append(conditioning_mask)
 | 
						|
 | 
						|
        # Patchify the updated latents and calculate their pixel coordinates
 | 
						|
        init_latents, init_latent_coords = self.patchifier.patchify(
 | 
						|
            latents=init_latents
 | 
						|
        )
 | 
						|
        init_pixel_coords = latent_to_pixel_coords(
 | 
						|
            init_latent_coords,
 | 
						|
            self.vae,
 | 
						|
            causal_fix=self.transformer.config.causal_temporal_positioning,
 | 
						|
        )
 | 
						|
 | 
						|
        if not conditioning_items:
 | 
						|
            return init_latents, init_pixel_coords, None, 0
 | 
						|
 | 
						|
        init_conditioning_mask, _ = self.patchifier.patchify(
 | 
						|
            latents=init_conditioning_mask.unsqueeze(1)
 | 
						|
        )
 | 
						|
        init_conditioning_mask = init_conditioning_mask.squeeze(-1)
 | 
						|
 | 
						|
        if extra_conditioning_latents:
 | 
						|
            # Stack the extra conditioning latents, pixel coordinates and mask
 | 
						|
            init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
 | 
						|
            init_pixel_coords = torch.cat(
 | 
						|
                [*extra_conditioning_pixel_coords, init_pixel_coords], dim=2
 | 
						|
            )
 | 
						|
            init_conditioning_mask = torch.cat(
 | 
						|
                [*extra_conditioning_mask, init_conditioning_mask], dim=1
 | 
						|
            )
 | 
						|
 | 
						|
            if self.transformer.use_tpu_flash_attention:
 | 
						|
                # When flash attention is used, keep the original number of tokens by removing
 | 
						|
                #   tokens from the end.
 | 
						|
                init_latents = init_latents[:, :-extra_conditioning_num_latents]
 | 
						|
                init_pixel_coords = init_pixel_coords[
 | 
						|
                    :, :, :-extra_conditioning_num_latents
 | 
						|
                ]
 | 
						|
                init_conditioning_mask = init_conditioning_mask[
 | 
						|
                    :, :-extra_conditioning_num_latents
 | 
						|
                ]
 | 
						|
 | 
						|
        return (
 | 
						|
            init_latents,
 | 
						|
            init_pixel_coords,
 | 
						|
            init_conditioning_mask,
 | 
						|
            extra_conditioning_num_latents,
 | 
						|
        )
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def _resize_conditioning_item(
 | 
						|
        conditioning_item: ConditioningItem,
 | 
						|
        height: int,
 | 
						|
        width: int,
 | 
						|
    ):
 | 
						|
        if conditioning_item.media_x or conditioning_item.media_y:
 | 
						|
            raise ValueError(
 | 
						|
                "Provide media_item in the target size for spatial conditioning."
 | 
						|
            )
 | 
						|
        new_conditioning_item = copy.copy(conditioning_item)
 | 
						|
        new_conditioning_item.media_item = LTXVideoPipeline.resize_tensor(
 | 
						|
            conditioning_item.media_item, height, width
 | 
						|
        )
 | 
						|
        return new_conditioning_item
 | 
						|
 | 
						|
    def _get_latent_spatial_position(
 | 
						|
        self,
 | 
						|
        latents: torch.Tensor,
 | 
						|
        conditioning_item: ConditioningItem,
 | 
						|
        height: int,
 | 
						|
        width: int,
 | 
						|
        strip_latent_border,
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Get the spatial position of the conditioning item in the latent space.
 | 
						|
        If requested, strip the conditioning latent borders that do not align with target borders.
 | 
						|
        (border latents look different then other latents and might confuse the model)
 | 
						|
        """
 | 
						|
        scale = self.vae_scale_factor
 | 
						|
        h, w = conditioning_item.media_item.shape[-2:]
 | 
						|
        assert (
 | 
						|
            h <= height and w <= width
 | 
						|
        ), f"Conditioning item size {h}x{w} is larger than target size {height}x{width}"
 | 
						|
        assert h % scale == 0 and w % scale == 0
 | 
						|
 | 
						|
        # Compute the start and end spatial positions of the media item
 | 
						|
        x_start, y_start = conditioning_item.media_x, conditioning_item.media_y
 | 
						|
        x_start = (width - w) // 2 if x_start is None else x_start
 | 
						|
        y_start = (height - h) // 2 if y_start is None else y_start
 | 
						|
        x_end, y_end = x_start + w, y_start + h
 | 
						|
        assert (
 | 
						|
            x_end <= width and y_end <= height
 | 
						|
        ), f"Conditioning item {x_start}:{x_end}x{y_start}:{y_end} is out of bounds for target size {width}x{height}"
 | 
						|
 | 
						|
        if strip_latent_border:
 | 
						|
            # Strip one latent from left/right and/or top/bottom, update x, y accordingly
 | 
						|
            if x_start > 0:
 | 
						|
                x_start += scale
 | 
						|
                latents = latents[:, :, :, :, 1:]
 | 
						|
 | 
						|
            if y_start > 0:
 | 
						|
                y_start += scale
 | 
						|
                latents = latents[:, :, :, 1:, :]
 | 
						|
 | 
						|
            if x_end < width:
 | 
						|
                latents = latents[:, :, :, :, :-1]
 | 
						|
 | 
						|
            if y_end < height:
 | 
						|
                latents = latents[:, :, :, :-1, :]
 | 
						|
 | 
						|
        return latents, x_start // scale, y_start // scale
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def _handle_non_first_conditioning_sequence(
 | 
						|
        init_latents: torch.Tensor,
 | 
						|
        init_conditioning_mask: torch.Tensor,
 | 
						|
        latents: torch.Tensor,
 | 
						|
        media_frame_number: int,
 | 
						|
        strength: float,
 | 
						|
        num_prefix_latent_frames: int = 2,
 | 
						|
        prefix_latents_mode: str = "concat",
 | 
						|
        prefix_soft_conditioning_strength: float = 0.15,
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Special handling for a conditioning sequence that does not start on the first frame.
 | 
						|
        The special handling is required to allow a short encoded video to be used as middle
 | 
						|
        (or last) sequence in a longer video.
 | 
						|
        Args:
 | 
						|
            init_latents (torch.Tensor): The initial noise latents to be updated.
 | 
						|
            init_conditioning_mask (torch.Tensor): The initial conditioning mask to be updated.
 | 
						|
            latents (torch.Tensor): The encoded conditioning item.
 | 
						|
            media_frame_number (int): The target frame number of the first frame in the conditioning sequence.
 | 
						|
            strength (float): The conditioning strength for the conditioning latents.
 | 
						|
            num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled
 | 
						|
                separately. Defaults to 2.
 | 
						|
            prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents.
 | 
						|
                - "drop": Drop the prefix latents.
 | 
						|
                - "soft": Use the prefix latents, but with soft-conditioning
 | 
						|
                - "concat": Add the prefix latents as extra tokens (like single frames)
 | 
						|
            prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for
 | 
						|
                the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1.
 | 
						|
 | 
						|
        """
 | 
						|
        f_l = latents.shape[2]
 | 
						|
        f_l_p = num_prefix_latent_frames
 | 
						|
        assert f_l >= f_l_p
 | 
						|
        assert media_frame_number % 8 == 0
 | 
						|
        if f_l > f_l_p:
 | 
						|
            # Insert the conditioning latents **excluding the prefix** into the sequence
 | 
						|
            f_l_start = media_frame_number // 8 + f_l_p
 | 
						|
            f_l_end = f_l_start + f_l - f_l_p
 | 
						|
            init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
 | 
						|
                init_latents[:, :, f_l_start:f_l_end],
 | 
						|
                latents[:, :, f_l_p:],
 | 
						|
                strength,
 | 
						|
            )
 | 
						|
            # Mark these latent frames as conditioning latents
 | 
						|
            init_conditioning_mask[:, f_l_start:f_l_end] = strength
 | 
						|
 | 
						|
        # Handle the prefix-latents
 | 
						|
        if prefix_latents_mode == "soft":
 | 
						|
            if f_l_p > 1:
 | 
						|
                # Drop the first (single-frame) latent and soft-condition the remaining prefix
 | 
						|
                f_l_start = media_frame_number // 8 + 1
 | 
						|
                f_l_end = f_l_start + f_l_p - 1
 | 
						|
                strength = min(prefix_soft_conditioning_strength, strength)
 | 
						|
                init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
 | 
						|
                    init_latents[:, :, f_l_start:f_l_end],
 | 
						|
                    latents[:, :, 1:f_l_p],
 | 
						|
                    strength,
 | 
						|
                )
 | 
						|
                # Mark these latent frames as conditioning latents
 | 
						|
                init_conditioning_mask[:, f_l_start:f_l_end] = strength
 | 
						|
            latents = None  # No more latents to handle
 | 
						|
        elif prefix_latents_mode == "drop":
 | 
						|
            # Drop the prefix latents
 | 
						|
            latents = None
 | 
						|
        elif prefix_latents_mode == "concat":
 | 
						|
            # Pass-on the prefix latents to be handled as extra conditioning frames
 | 
						|
            latents = latents[:, :, :f_l_p]
 | 
						|
        else:
 | 
						|
            raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}")
 | 
						|
        return (
 | 
						|
            init_latents,
 | 
						|
            init_conditioning_mask,
 | 
						|
            latents,
 | 
						|
        )
 | 
						|
 | 
						|
    def trim_conditioning_sequence(
 | 
						|
        self, start_frame: int, sequence_num_frames: int, target_num_frames: int
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Trim a conditioning sequence to the allowed number of frames.
 | 
						|
 | 
						|
        Args:
 | 
						|
            start_frame (int): The target frame number of the first frame in the sequence.
 | 
						|
            sequence_num_frames (int): The number of frames in the sequence.
 | 
						|
            target_num_frames (int): The target number of frames in the generated video.
 | 
						|
 | 
						|
        Returns:
 | 
						|
            int: updated sequence length
 | 
						|
        """
 | 
						|
        scale_factor = self.video_scale_factor
 | 
						|
        num_frames = min(sequence_num_frames, target_num_frames - start_frame)
 | 
						|
        # Trim down to a multiple of temporal_scale_factor frames plus 1
 | 
						|
        num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
 | 
						|
        return num_frames
 | 
						|
 | 
						|
def adain_filter_latent(
 | 
						|
    latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0
 | 
						|
):
 | 
						|
    """
 | 
						|
    Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on
 | 
						|
    statistics from a reference latent tensor.
 | 
						|
 | 
						|
    Args:
 | 
						|
        latent (torch.Tensor): Input latents to normalize
 | 
						|
        reference_latent (torch.Tensor): The reference latents providing style statistics.
 | 
						|
        factor (float): Blending factor between original and transformed latent.
 | 
						|
                       Range: -10.0 to 10.0, Default: 1.0
 | 
						|
 | 
						|
    Returns:
 | 
						|
        torch.Tensor: The transformed latent tensor
 | 
						|
    """
 | 
						|
    result = latents.clone()
 | 
						|
 | 
						|
    for i in range(latents.size(0)):
 | 
						|
        for c in range(latents.size(1)):
 | 
						|
            r_sd, r_mean = torch.std_mean(
 | 
						|
                reference_latents[i, c], dim=None
 | 
						|
            )  # index by original dim order
 | 
						|
            i_sd, i_mean = torch.std_mean(result[i, c], dim=None)
 | 
						|
 | 
						|
            result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean
 | 
						|
 | 
						|
    result = torch.lerp(latents, result, factor)
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
 | 
						|
class LTXMultiScalePipeline:
 | 
						|
    @staticmethod
 | 
						|
    def batch_normalize(latents, reference, factor = 0.25):
 | 
						|
        latents_copy = latents.clone()
 | 
						|
        t = latents_copy   #  B x C x F x H x W
 | 
						|
 | 
						|
        for i in range(t.size(0)):  # batch
 | 
						|
            for c in range(t.size(1)):  # channel
 | 
						|
                r_sd, r_mean = torch.std_mean(
 | 
						|
                    reference[i, c], dim=None
 | 
						|
                )  # index by original dim order
 | 
						|
                i_sd, i_mean = torch.std_mean(t[i, c], dim=None)
 | 
						|
 | 
						|
                t[i, c] = ((t[i, c] - i_mean) / i_sd) * r_sd + r_mean
 | 
						|
 | 
						|
        latents_copy  = torch.lerp(latents, t, factor)
 | 
						|
        return latents_copy
 | 
						|
 | 
						|
 | 
						|
    def _upsample_latents(
 | 
						|
        self, latest_upsampler: LatentUpsampler, latents: torch.Tensor
 | 
						|
    ):
 | 
						|
        # assert latents.device == latest_upsampler.device
 | 
						|
 | 
						|
        latents = un_normalize_latents(
 | 
						|
            latents, self.vae, vae_per_channel_normalize=True
 | 
						|
        )
 | 
						|
        upsampled_latents = latest_upsampler(latents)
 | 
						|
        upsampled_latents = normalize_latents(
 | 
						|
            upsampled_latents, self.vae, vae_per_channel_normalize=True
 | 
						|
        )
 | 
						|
        return upsampled_latents
 | 
						|
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self, video_pipeline: LTXVideoPipeline, latent_upsampler: LatentUpsampler
 | 
						|
    ):
 | 
						|
        self.video_pipeline = video_pipeline
 | 
						|
        self.vae = video_pipeline.vae
 | 
						|
        self.latent_upsampler = latent_upsampler
 | 
						|
 | 
						|
    def __call__(
 | 
						|
        self,
 | 
						|
        downscale_factor: float,
 | 
						|
        first_pass: dict,
 | 
						|
        second_pass: dict,
 | 
						|
        *args: Any,
 | 
						|
        **kwargs: Any,
 | 
						|
    ) -> Any:
 | 
						|
        video_pipeline = self.video_pipeline
 | 
						|
 | 
						|
        original_kwargs = kwargs.copy()
 | 
						|
        original_output_type = kwargs["output_type"]
 | 
						|
        original_width = kwargs["width"]
 | 
						|
        original_height = kwargs["height"]
 | 
						|
 | 
						|
        x_width = int(kwargs["width"] * downscale_factor)
 | 
						|
        downscaled_width = x_width - (x_width % self.video_pipeline.vae_scale_factor)
 | 
						|
        x_height = int(kwargs["height"] * downscale_factor)
 | 
						|
        downscaled_height = x_height - (x_height % self.video_pipeline.vae_scale_factor)
 | 
						|
        trans = video_pipeline.transformer
 | 
						|
        kwargs["output_type"] = "latent"
 | 
						|
        kwargs["width"] = downscaled_width
 | 
						|
        kwargs["height"] = downscaled_height
 | 
						|
 | 
						|
 | 
						|
        VAE_tile_size = kwargs["VAE_tile_size"]
 | 
						|
 | 
						|
        z_tile, hw_tile = VAE_tile_size
 | 
						|
 | 
						|
        if z_tile > 0: 
 | 
						|
            self.vae.enable_z_tiling(z_tile)  
 | 
						|
        if hw_tile > 0: 
 | 
						|
            self.vae.enable_hw_tiling()
 | 
						|
            self.vae.set_tiling_params(hw_tile)
 | 
						|
  
 | 
						|
        ltxv_model = kwargs["ltxv_model"]
 | 
						|
        text_encoder_max_tokens = 256
 | 
						|
        prompt = kwargs.pop("prompt")
 | 
						|
        negative_prompt = kwargs.pop("negative_prompt")
 | 
						|
        if False and kwargs["enhance_prompt"]:
 | 
						|
            prompt = generate_cinematic_prompt(
 | 
						|
                video_pipeline.prompt_enhancer_image_caption_model,
 | 
						|
                video_pipeline.prompt_enhancer_image_caption_processor,
 | 
						|
                video_pipeline.prompt_enhancer_llm_model,
 | 
						|
                video_pipeline.prompt_enhancer_llm_tokenizer,
 | 
						|
                prompt,
 | 
						|
                kwargs["conditioning_items"],
 | 
						|
                max_new_tokens=text_encoder_max_tokens,
 | 
						|
            )
 | 
						|
            print("Enhanced prompt: " + prompt[0])
 | 
						|
 | 
						|
        # Encode input prompt
 | 
						|
 | 
						|
        (
 | 
						|
            prompt_embeds,
 | 
						|
            prompt_attention_mask,
 | 
						|
            negative_prompt_embeds,
 | 
						|
            negative_prompt_attention_mask,
 | 
						|
        ) = video_pipeline.encode_prompt(
 | 
						|
            prompt,
 | 
						|
            True,
 | 
						|
            negative_prompt=negative_prompt,
 | 
						|
            device=kwargs["device"],
 | 
						|
            text_encoder_max_tokens=text_encoder_max_tokens,
 | 
						|
        )
 | 
						|
        if ltxv_model._interrupt:
 | 
						|
            return None
 | 
						|
 | 
						|
        kwargs["prompt_embeds"] = prompt_embeds
 | 
						|
        kwargs["prompt_attention_mask"] = prompt_attention_mask
 | 
						|
        kwargs["negative_prompt_embeds"] = negative_prompt_embeds
 | 
						|
        kwargs["negative_prompt_attention_mask"] = negative_prompt_attention_mask
 | 
						|
 | 
						|
        original_kwargs = kwargs.copy()
 | 
						|
 | 
						|
        kwargs["joint_pass"] = True
 | 
						|
        kwargs["pass_no"] = 1
 | 
						|
 | 
						|
 | 
						|
        kwargs.update(**first_pass)
 | 
						|
        kwargs["num_inference_steps"] = kwargs["num_inference_steps1"] 
 | 
						|
        result = video_pipeline(*args, **kwargs)
 | 
						|
        if result == None:
 | 
						|
            return None
 | 
						|
 | 
						|
        latents = result
 | 
						|
 | 
						|
        upsampled_latents = self._upsample_latents(self.latent_upsampler, latents)
 | 
						|
 | 
						|
        upsampled_latents = adain_filter_latent(
 | 
						|
            latents=upsampled_latents, reference_latents=latents
 | 
						|
        )        
 | 
						|
        # upsampled_latents = self.batch_normalize(upsampled_latents, latents)
 | 
						|
 | 
						|
        kwargs = original_kwargs
 | 
						|
        kwargs["latents"] = upsampled_latents
 | 
						|
        kwargs["output_type"] = original_output_type
 | 
						|
        kwargs["width"] = downscaled_width * 2
 | 
						|
        kwargs["height"] = downscaled_height * 2
 | 
						|
        kwargs["joint_pass"] = False
 | 
						|
        kwargs["pass_no"] = 2
 | 
						|
 | 
						|
        kwargs.update(**second_pass)
 | 
						|
        kwargs["num_inference_steps"] = kwargs["num_inference_steps2"] 
 | 
						|
 | 
						|
        result = video_pipeline(*args, **kwargs)
 | 
						|
        if result == None:
 | 
						|
            return None
 | 
						|
        if original_output_type != "latent":
 | 
						|
            num_frames = result.shape[2]
 | 
						|
            videos = rearrange(result, "b c f h w -> (b f) c h w")
 | 
						|
 | 
						|
            videos = F.interpolate(
 | 
						|
                videos,
 | 
						|
                size=(original_height, original_width),
 | 
						|
                mode="bilinear",
 | 
						|
                align_corners=False,
 | 
						|
            )
 | 
						|
            videos = rearrange(videos, "(b f) c h w -> b c f h w", f=num_frames)
 | 
						|
            result = videos
 | 
						|
 | 
						|
        return result
 |