mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			348 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			348 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
import gc
 | 
						|
import logging
 | 
						|
import math
 | 
						|
import os
 | 
						|
import random
 | 
						|
import sys
 | 
						|
import types
 | 
						|
from contextlib import contextmanager
 | 
						|
from functools import partial
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
import torch.cuda.amp as amp
 | 
						|
import torch.distributed as dist
 | 
						|
import torchvision.transforms.functional as TF
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
from .distributed.fsdp import shard_model
 | 
						|
from .modules.clip import CLIPModel
 | 
						|
from .modules.model import WanModel
 | 
						|
from .modules.t5 import T5EncoderModel
 | 
						|
from .modules.vae import WanVAE
 | 
						|
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
						|
                               get_sampling_sigmas, retrieve_timesteps)
 | 
						|
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
						|
 | 
						|
 | 
						|
class WanI2V:
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        config,
 | 
						|
        checkpoint_dir,
 | 
						|
        device_id=0,
 | 
						|
        rank=0,
 | 
						|
        t5_fsdp=False,
 | 
						|
        dit_fsdp=False,
 | 
						|
        use_usp=False,
 | 
						|
        t5_cpu=False,
 | 
						|
        init_on_cpu=True,
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        Initializes the image-to-video generation model components.
 | 
						|
 | 
						|
        Args:
 | 
						|
            config (EasyDict):
 | 
						|
                Object containing model parameters initialized from config.py
 | 
						|
            checkpoint_dir (`str`):
 | 
						|
                Path to directory containing model checkpoints
 | 
						|
            device_id (`int`,  *optional*, defaults to 0):
 | 
						|
                Id of target GPU device
 | 
						|
            rank (`int`,  *optional*, defaults to 0):
 | 
						|
                Process rank for distributed training
 | 
						|
            t5_fsdp (`bool`, *optional*, defaults to False):
 | 
						|
                Enable FSDP sharding for T5 model
 | 
						|
            dit_fsdp (`bool`, *optional*, defaults to False):
 | 
						|
                Enable FSDP sharding for DiT model
 | 
						|
            use_usp (`bool`, *optional*, defaults to False):
 | 
						|
                Enable distribution strategy of USP.
 | 
						|
            t5_cpu (`bool`, *optional*, defaults to False):
 | 
						|
                Whether to place T5 model on CPU. Only works without t5_fsdp.
 | 
						|
            init_on_cpu (`bool`, *optional*, defaults to True):
 | 
						|
                Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
 | 
						|
        """
 | 
						|
        self.device = torch.device(f"cuda:{device_id}")
 | 
						|
        self.config = config
 | 
						|
        self.rank = rank
 | 
						|
        self.use_usp = use_usp
 | 
						|
        self.t5_cpu = t5_cpu
 | 
						|
 | 
						|
        self.num_train_timesteps = config.num_train_timesteps
 | 
						|
        self.param_dtype = config.param_dtype
 | 
						|
 | 
						|
        shard_fn = partial(shard_model, device_id=device_id)
 | 
						|
        self.text_encoder = T5EncoderModel(
 | 
						|
            text_len=config.text_len,
 | 
						|
            dtype=config.t5_dtype,
 | 
						|
            device=torch.device('cpu'),
 | 
						|
            checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
 | 
						|
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
						|
            shard_fn=shard_fn if t5_fsdp else None,
 | 
						|
        )
 | 
						|
 | 
						|
        self.vae_stride = config.vae_stride
 | 
						|
        self.patch_size = config.patch_size
 | 
						|
        self.vae = WanVAE(
 | 
						|
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
 | 
						|
            device=self.device)
 | 
						|
 | 
						|
        self.clip = CLIPModel(
 | 
						|
            dtype=config.clip_dtype,
 | 
						|
            device=self.device,
 | 
						|
            checkpoint_path=os.path.join(checkpoint_dir,
 | 
						|
                                         config.clip_checkpoint),
 | 
						|
            tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
 | 
						|
 | 
						|
        logging.info(f"Creating WanModel from {checkpoint_dir}")
 | 
						|
        self.model = WanModel.from_pretrained(checkpoint_dir)
 | 
						|
        self.model.eval().requires_grad_(False)
 | 
						|
 | 
						|
        if t5_fsdp or dit_fsdp or use_usp:
 | 
						|
            init_on_cpu = False
 | 
						|
 | 
						|
        if use_usp:
 | 
						|
            from xfuser.core.distributed import \
 | 
						|
                get_sequence_parallel_world_size
 | 
						|
 | 
						|
            from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
						|
                                                            usp_dit_forward)
 | 
						|
            for block in self.model.blocks:
 | 
						|
                block.self_attn.forward = types.MethodType(
 | 
						|
                    usp_attn_forward, block.self_attn)
 | 
						|
            self.model.forward = types.MethodType(usp_dit_forward, self.model)
 | 
						|
            self.sp_size = get_sequence_parallel_world_size()
 | 
						|
        else:
 | 
						|
            self.sp_size = 1
 | 
						|
 | 
						|
        if dist.is_initialized():
 | 
						|
            dist.barrier()
 | 
						|
        if dit_fsdp:
 | 
						|
            self.model = shard_fn(self.model)
 | 
						|
        else:
 | 
						|
            if not init_on_cpu:
 | 
						|
                self.model.to(self.device)
 | 
						|
 | 
						|
        self.sample_neg_prompt = config.sample_neg_prompt
 | 
						|
 | 
						|
    def generate(self,
 | 
						|
                 input_prompt,
 | 
						|
                 img,
 | 
						|
                 max_area=720 * 1280,
 | 
						|
                 frame_num=81,
 | 
						|
                 shift=5.0,
 | 
						|
                 sample_solver='unipc',
 | 
						|
                 sampling_steps=40,
 | 
						|
                 guide_scale=5.0,
 | 
						|
                 n_prompt="",
 | 
						|
                 seed=-1,
 | 
						|
                 offload_model=True):
 | 
						|
        r"""
 | 
						|
        Generates video frames from input image and text prompt using diffusion process.
 | 
						|
 | 
						|
        Args:
 | 
						|
            input_prompt (`str`):
 | 
						|
                Text prompt for content generation.
 | 
						|
            img (PIL.Image.Image):
 | 
						|
                Input image tensor. Shape: [3, H, W]
 | 
						|
            max_area (`int`, *optional*, defaults to 720*1280):
 | 
						|
                Maximum pixel area for latent space calculation. Controls video resolution scaling
 | 
						|
            frame_num (`int`, *optional*, defaults to 81):
 | 
						|
                How many frames to sample from a video. The number should be 4n+1
 | 
						|
            shift (`float`, *optional*, defaults to 5.0):
 | 
						|
                Noise schedule shift parameter. Affects temporal dynamics
 | 
						|
                [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
 | 
						|
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
						|
                Solver used to sample the video.
 | 
						|
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
						|
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
						|
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
						|
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
						|
            n_prompt (`str`, *optional*, defaults to ""):
 | 
						|
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
						|
            seed (`int`, *optional*, defaults to -1):
 | 
						|
                Random seed for noise generation. If -1, use random seed
 | 
						|
            offload_model (`bool`, *optional*, defaults to True):
 | 
						|
                If True, offloads models to CPU during generation to save VRAM
 | 
						|
 | 
						|
        Returns:
 | 
						|
            torch.Tensor:
 | 
						|
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
						|
                - C: Color channels (3 for RGB)
 | 
						|
                - N: Number of frames (81)
 | 
						|
                - H: Frame height (from max_area)
 | 
						|
                - W: Frame width from max_area)
 | 
						|
        """
 | 
						|
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
 | 
						|
 | 
						|
        F = frame_num
 | 
						|
        h, w = img.shape[1:]
 | 
						|
        aspect_ratio = h / w
 | 
						|
        lat_h = round(
 | 
						|
            np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
 | 
						|
            self.patch_size[1] * self.patch_size[1])
 | 
						|
        lat_w = round(
 | 
						|
            np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
 | 
						|
            self.patch_size[2] * self.patch_size[2])
 | 
						|
        h = lat_h * self.vae_stride[1]
 | 
						|
        w = lat_w * self.vae_stride[2]
 | 
						|
 | 
						|
        max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
 | 
						|
            self.patch_size[1] * self.patch_size[2])
 | 
						|
        max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
 | 
						|
 | 
						|
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
						|
        seed_g = torch.Generator(device=self.device)
 | 
						|
        seed_g.manual_seed(seed)
 | 
						|
        noise = torch.randn(
 | 
						|
            16,
 | 
						|
            21,
 | 
						|
            lat_h,
 | 
						|
            lat_w,
 | 
						|
            dtype=torch.float32,
 | 
						|
            generator=seed_g,
 | 
						|
            device=self.device)
 | 
						|
 | 
						|
        msk = torch.ones(1, 81, lat_h, lat_w, device=self.device)
 | 
						|
        msk[:, 1:] = 0
 | 
						|
        msk = torch.concat([
 | 
						|
            torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
 | 
						|
        ],
 | 
						|
                           dim=1)
 | 
						|
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
 | 
						|
        msk = msk.transpose(1, 2)[0]
 | 
						|
 | 
						|
        if n_prompt == "":
 | 
						|
            n_prompt = self.sample_neg_prompt
 | 
						|
 | 
						|
        # preprocess
 | 
						|
        if not self.t5_cpu:
 | 
						|
            self.text_encoder.model.to(self.device)
 | 
						|
            context = self.text_encoder([input_prompt], self.device)
 | 
						|
            context_null = self.text_encoder([n_prompt], self.device)
 | 
						|
            if offload_model:
 | 
						|
                self.text_encoder.model.cpu()
 | 
						|
        else:
 | 
						|
            context = self.text_encoder([input_prompt], torch.device('cpu'))
 | 
						|
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
 | 
						|
            context = [t.to(self.device) for t in context]
 | 
						|
            context_null = [t.to(self.device) for t in context_null]
 | 
						|
 | 
						|
        self.clip.model.to(self.device)
 | 
						|
        clip_context = self.clip.visual([img[:, None, :, :]])
 | 
						|
        if offload_model:
 | 
						|
            self.clip.model.cpu()
 | 
						|
 | 
						|
        y = self.vae.encode([
 | 
						|
            torch.concat([
 | 
						|
                torch.nn.functional.interpolate(
 | 
						|
                    img[None].cpu(), size=(h, w), mode='bicubic').transpose(
 | 
						|
                        0, 1),
 | 
						|
                torch.zeros(3, 80, h, w)
 | 
						|
            ],
 | 
						|
                         dim=1).to(self.device)
 | 
						|
        ])[0]
 | 
						|
        y = torch.concat([msk, y])
 | 
						|
 | 
						|
        @contextmanager
 | 
						|
        def noop_no_sync():
 | 
						|
            yield
 | 
						|
 | 
						|
        no_sync = getattr(self.model, 'no_sync', noop_no_sync)
 | 
						|
 | 
						|
        # evaluation mode
 | 
						|
        with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
 | 
						|
 | 
						|
            if sample_solver == 'unipc':
 | 
						|
                sample_scheduler = FlowUniPCMultistepScheduler(
 | 
						|
                    num_train_timesteps=self.num_train_timesteps,
 | 
						|
                    shift=1,
 | 
						|
                    use_dynamic_shifting=False)
 | 
						|
                sample_scheduler.set_timesteps(
 | 
						|
                    sampling_steps, device=self.device, shift=shift)
 | 
						|
                timesteps = sample_scheduler.timesteps
 | 
						|
            elif sample_solver == 'dpm++':
 | 
						|
                sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
						|
                    num_train_timesteps=self.num_train_timesteps,
 | 
						|
                    shift=1,
 | 
						|
                    use_dynamic_shifting=False)
 | 
						|
                sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
						|
                timesteps, _ = retrieve_timesteps(
 | 
						|
                    sample_scheduler,
 | 
						|
                    device=self.device,
 | 
						|
                    sigmas=sampling_sigmas)
 | 
						|
            else:
 | 
						|
                raise NotImplementedError("Unsupported solver.")
 | 
						|
 | 
						|
            # sample videos
 | 
						|
            latent = noise
 | 
						|
 | 
						|
            arg_c = {
 | 
						|
                'context': [context[0]],
 | 
						|
                'clip_fea': clip_context,
 | 
						|
                'seq_len': max_seq_len,
 | 
						|
                'y': [y],
 | 
						|
            }
 | 
						|
 | 
						|
            arg_null = {
 | 
						|
                'context': context_null,
 | 
						|
                'clip_fea': clip_context,
 | 
						|
                'seq_len': max_seq_len,
 | 
						|
                'y': [y],
 | 
						|
            }
 | 
						|
 | 
						|
            if offload_model:
 | 
						|
                torch.cuda.empty_cache()
 | 
						|
 | 
						|
            self.model.to(self.device)
 | 
						|
            for _, t in enumerate(tqdm(timesteps)):
 | 
						|
                latent_model_input = [latent.to(self.device)]
 | 
						|
                timestep = [t]
 | 
						|
 | 
						|
                timestep = torch.stack(timestep).to(self.device)
 | 
						|
 | 
						|
                noise_pred_cond = self.model(
 | 
						|
                    latent_model_input, t=timestep, **arg_c)[0].to(
 | 
						|
                        torch.device('cpu') if offload_model else self.device)
 | 
						|
                if offload_model:
 | 
						|
                    torch.cuda.empty_cache()
 | 
						|
                noise_pred_uncond = self.model(
 | 
						|
                    latent_model_input, t=timestep, **arg_null)[0].to(
 | 
						|
                        torch.device('cpu') if offload_model else self.device)
 | 
						|
                if offload_model:
 | 
						|
                    torch.cuda.empty_cache()
 | 
						|
                noise_pred = noise_pred_uncond + guide_scale * (
 | 
						|
                    noise_pred_cond - noise_pred_uncond)
 | 
						|
 | 
						|
                latent = latent.to(
 | 
						|
                    torch.device('cpu') if offload_model else self.device)
 | 
						|
 | 
						|
                temp_x0 = sample_scheduler.step(
 | 
						|
                    noise_pred.unsqueeze(0),
 | 
						|
                    t,
 | 
						|
                    latent.unsqueeze(0),
 | 
						|
                    return_dict=False,
 | 
						|
                    generator=seed_g)[0]
 | 
						|
                latent = temp_x0.squeeze(0)
 | 
						|
 | 
						|
                x0 = [latent.to(self.device)]
 | 
						|
                del latent_model_input, timestep
 | 
						|
 | 
						|
            if offload_model:
 | 
						|
                self.model.cpu()
 | 
						|
                torch.cuda.empty_cache()
 | 
						|
 | 
						|
            if self.rank == 0:
 | 
						|
                videos = self.vae.decode(x0)
 | 
						|
 | 
						|
        del noise, latent
 | 
						|
        del sample_scheduler
 | 
						|
        if offload_model:
 | 
						|
            gc.collect()
 | 
						|
            torch.cuda.synchronize()
 | 
						|
        if dist.is_initialized():
 | 
						|
            dist.barrier()
 | 
						|
 | 
						|
        return videos[0] if self.rank == 0 else None
 |