mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			520 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
import gc
 | 
						|
import logging
 | 
						|
import math
 | 
						|
import os
 | 
						|
import random
 | 
						|
import sys
 | 
						|
import types
 | 
						|
from contextlib import contextmanager
 | 
						|
from functools import partial
 | 
						|
from mmgp import offload
 | 
						|
import torch
 | 
						|
import torch.cuda.amp as amp
 | 
						|
import torch.distributed as dist
 | 
						|
from tqdm import tqdm
 | 
						|
from PIL import Image
 | 
						|
import torchvision.transforms.functional as TF
 | 
						|
import torch.nn.functional as F
 | 
						|
from .distributed.fsdp import shard_model
 | 
						|
from .modules.model import WanModel
 | 
						|
from .modules.t5 import T5EncoderModel
 | 
						|
from .modules.vae import WanVAE
 | 
						|
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
						|
                               get_sampling_sigmas, retrieve_timesteps)
 | 
						|
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
						|
from wan.modules.posemb_layers import get_rotary_pos_embed
 | 
						|
from .utils.vace_preprocessor import VaceVideoProcessor
 | 
						|
 | 
						|
 | 
						|
def optimized_scale(positive_flat, negative_flat):
 | 
						|
 | 
						|
    # Calculate dot production
 | 
						|
    dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
 | 
						|
 | 
						|
    # Squared norm of uncondition
 | 
						|
    squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
 | 
						|
 | 
						|
    # st_star = v_cond^T * v_uncond / ||v_uncond||^2
 | 
						|
    st_star = dot_product / squared_norm
 | 
						|
    
 | 
						|
    return st_star
 | 
						|
    
 | 
						|
 | 
						|
class WanT2V:
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        config,
 | 
						|
        checkpoint_dir,
 | 
						|
        device_id=0,
 | 
						|
        rank=0,
 | 
						|
        t5_fsdp=False,
 | 
						|
        dit_fsdp=False,
 | 
						|
        use_usp=False,
 | 
						|
        t5_cpu=False,
 | 
						|
        model_filename = None,
 | 
						|
        text_encoder_filename = None
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        Initializes the Wan text-to-video generation model components.
 | 
						|
 | 
						|
        Args:
 | 
						|
            config (EasyDict):
 | 
						|
                Object containing model parameters initialized from config.py
 | 
						|
            checkpoint_dir (`str`):
 | 
						|
                Path to directory containing model checkpoints
 | 
						|
            device_id (`int`,  *optional*, defaults to 0):
 | 
						|
                Id of target GPU device
 | 
						|
            rank (`int`,  *optional*, defaults to 0):
 | 
						|
                Process rank for distributed training
 | 
						|
            t5_fsdp (`bool`, *optional*, defaults to False):
 | 
						|
                Enable FSDP sharding for T5 model
 | 
						|
            dit_fsdp (`bool`, *optional*, defaults to False):
 | 
						|
                Enable FSDP sharding for DiT model
 | 
						|
            use_usp (`bool`, *optional*, defaults to False):
 | 
						|
                Enable distribution strategy of USP.
 | 
						|
            t5_cpu (`bool`, *optional*, defaults to False):
 | 
						|
                Whether to place T5 model on CPU. Only works without t5_fsdp.
 | 
						|
        """
 | 
						|
        self.device = torch.device(f"cuda:{device_id}")
 | 
						|
        self.config = config
 | 
						|
        self.rank = rank
 | 
						|
        self.t5_cpu = t5_cpu
 | 
						|
 | 
						|
        self.num_train_timesteps = config.num_train_timesteps
 | 
						|
        self.param_dtype = config.param_dtype
 | 
						|
 | 
						|
        shard_fn = partial(shard_model, device_id=device_id)
 | 
						|
        self.text_encoder = T5EncoderModel(
 | 
						|
            text_len=config.text_len,
 | 
						|
            dtype=config.t5_dtype,
 | 
						|
            device=torch.device('cpu'),
 | 
						|
            checkpoint_path=text_encoder_filename,
 | 
						|
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
						|
            shard_fn=shard_fn if t5_fsdp else None)
 | 
						|
 | 
						|
        self.vae_stride = config.vae_stride
 | 
						|
        self.patch_size = config.patch_size
 | 
						|
 | 
						|
        
 | 
						|
        self.vae = WanVAE(
 | 
						|
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
 | 
						|
            device=self.device)
 | 
						|
 | 
						|
        logging.info(f"Creating WanModel from {model_filename}")
 | 
						|
        from mmgp import offload
 | 
						|
 | 
						|
 | 
						|
        self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel, writable_tensors= False)
 | 
						|
 | 
						|
        self.model.eval().requires_grad_(False)
 | 
						|
 | 
						|
        if use_usp:
 | 
						|
            from xfuser.core.distributed import \
 | 
						|
                get_sequence_parallel_world_size
 | 
						|
 | 
						|
            from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
						|
                                                            usp_dit_forward)
 | 
						|
            for block in self.model.blocks:
 | 
						|
                block.self_attn.forward = types.MethodType(
 | 
						|
                    usp_attn_forward, block.self_attn)
 | 
						|
            self.model.forward = types.MethodType(usp_dit_forward, self.model)
 | 
						|
            self.sp_size = get_sequence_parallel_world_size()
 | 
						|
        else:
 | 
						|
            self.sp_size = 1
 | 
						|
 | 
						|
        # if dist.is_initialized():
 | 
						|
        #     dist.barrier()
 | 
						|
        # if dit_fsdp:
 | 
						|
        #     self.model = shard_fn(self.model)
 | 
						|
        # else:
 | 
						|
        #     self.model.to(self.device)
 | 
						|
 | 
						|
        self.sample_neg_prompt = config.sample_neg_prompt
 | 
						|
 | 
						|
        if "Vace" in model_filename:
 | 
						|
            self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
 | 
						|
                                            min_area=480*832,
 | 
						|
                                            max_area=480*832,
 | 
						|
                                            min_fps=config.sample_fps,
 | 
						|
                                            max_fps=config.sample_fps,
 | 
						|
                                            zero_start=True,
 | 
						|
                                            seq_len=32760,
 | 
						|
                                            keep_last=True)
 | 
						|
 | 
						|
            self.adapt_vace_model()
 | 
						|
 | 
						|
    def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0):
 | 
						|
        if ref_images is None:
 | 
						|
            ref_images = [None] * len(frames)
 | 
						|
        else:
 | 
						|
            assert len(frames) == len(ref_images)
 | 
						|
 | 
						|
        if masks is None:
 | 
						|
            latents = self.vae.encode(frames, tile_size = tile_size)
 | 
						|
        else:
 | 
						|
            inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
 | 
						|
            reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
 | 
						|
            inactive = self.vae.encode(inactive, tile_size = tile_size)
 | 
						|
            reactive = self.vae.encode(reactive, tile_size = tile_size)
 | 
						|
            latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
 | 
						|
 | 
						|
        cat_latents = []
 | 
						|
        for latent, refs in zip(latents, ref_images):
 | 
						|
            if refs is not None:
 | 
						|
                if masks is None:
 | 
						|
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
 | 
						|
                else:
 | 
						|
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
 | 
						|
                    ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
 | 
						|
                assert all([x.shape[1] == 1 for x in ref_latent])
 | 
						|
                latent = torch.cat([*ref_latent, latent], dim=1)
 | 
						|
            cat_latents.append(latent)
 | 
						|
        return cat_latents
 | 
						|
 | 
						|
    def vace_encode_masks(self, masks, ref_images=None):
 | 
						|
        if ref_images is None:
 | 
						|
            ref_images = [None] * len(masks)
 | 
						|
        else:
 | 
						|
            assert len(masks) == len(ref_images)
 | 
						|
 | 
						|
        result_masks = []
 | 
						|
        for mask, refs in zip(masks, ref_images):
 | 
						|
            c, depth, height, width = mask.shape
 | 
						|
            new_depth = int((depth + 3) // self.vae_stride[0])
 | 
						|
            height = 2 * (int(height) // (self.vae_stride[1] * 2))
 | 
						|
            width = 2 * (int(width) // (self.vae_stride[2] * 2))
 | 
						|
 | 
						|
            # reshape
 | 
						|
            mask = mask[0, :, :, :]
 | 
						|
            mask = mask.view(
 | 
						|
                depth, height, self.vae_stride[1], width, self.vae_stride[1]
 | 
						|
            )  # depth, height, 8, width, 8
 | 
						|
            mask = mask.permute(2, 4, 0, 1, 3)  # 8, 8, depth, height, width
 | 
						|
            mask = mask.reshape(
 | 
						|
                self.vae_stride[1] * self.vae_stride[2], depth, height, width
 | 
						|
            )  # 8*8, depth, height, width
 | 
						|
 | 
						|
            # interpolation
 | 
						|
            mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
 | 
						|
 | 
						|
            if refs is not None:
 | 
						|
                length = len(refs)
 | 
						|
                mask_pad = torch.zeros_like(mask[:, :length, :, :])
 | 
						|
                mask = torch.cat((mask_pad, mask), dim=1)
 | 
						|
            result_masks.append(mask)
 | 
						|
        return result_masks
 | 
						|
 | 
						|
    def vace_latent(self, z, m):
 | 
						|
        return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
 | 
						|
 | 
						|
    def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size,  device, original_video = False, trim_video= 0):
 | 
						|
        image_sizes = []
 | 
						|
        for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
 | 
						|
            if sub_src_mask is not None and sub_src_video is not None:
 | 
						|
                src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask, max_frames= num_frames, trim_video = trim_video)
 | 
						|
                # src_video is [-1, 1], 0 = inpainting area (in fact 127  in [0, 255])
 | 
						|
                # src_mask is [-1, 1], 0 = preserve original video (in fact 127  in [0, 255]) and 1 = Inpainting (in fact 255  in [0, 255])
 | 
						|
                src_video[i] = src_video[i].to(device)
 | 
						|
                src_mask[i] = src_mask[i].to(device)
 | 
						|
                src_video_shape = src_video[i].shape
 | 
						|
                if src_video_shape[1] != num_frames:
 | 
						|
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						|
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						|
                src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
 | 
						|
                image_sizes.append(src_video[i].shape[2:])
 | 
						|
            elif sub_src_video is None:
 | 
						|
                src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
 | 
						|
                src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
						|
                image_sizes.append(image_size)
 | 
						|
            else:
 | 
						|
                src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video, max_frames= num_frames, trim_video = trim_video)
 | 
						|
                src_video[i] = src_video[i].to(device)
 | 
						|
                src_mask[i] = torch.zeros_like(src_video[i], device=device) if original_video else torch.ones_like(src_video[i], device=device)
 | 
						|
                src_video_shape = src_video[i].shape
 | 
						|
                if  src_video_shape[1] != num_frames:
 | 
						|
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						|
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
						|
                image_sizes.append(src_video[i].shape[2:])
 | 
						|
 | 
						|
        for i, ref_images in enumerate(src_ref_images):
 | 
						|
            if ref_images is not None:
 | 
						|
                image_size = image_sizes[i]
 | 
						|
                for j, ref_img in enumerate(ref_images):
 | 
						|
                    if ref_img is not None:
 | 
						|
                        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
 | 
						|
                        if ref_img.shape[-2:] != image_size:
 | 
						|
                            canvas_height, canvas_width = image_size
 | 
						|
                            ref_height, ref_width = ref_img.shape[-2:]
 | 
						|
                            white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
 | 
						|
                            scale = min(canvas_height / ref_height, canvas_width / ref_width)
 | 
						|
                            new_height = int(ref_height * scale)
 | 
						|
                            new_width = int(ref_width * scale)
 | 
						|
                            resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
 | 
						|
                            top = (canvas_height - new_height) // 2
 | 
						|
                            left = (canvas_width - new_width) // 2
 | 
						|
                            white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
 | 
						|
                            ref_img = white_canvas
 | 
						|
                        src_ref_images[i][j] = ref_img.to(device)
 | 
						|
        return src_video, src_mask, src_ref_images
 | 
						|
 | 
						|
    def decode_latent(self, zs, ref_images=None, tile_size= 0 ):
 | 
						|
        if ref_images is None:
 | 
						|
            ref_images = [None] * len(zs)
 | 
						|
        else:
 | 
						|
            assert len(zs) == len(ref_images)
 | 
						|
 | 
						|
        trimed_zs = []
 | 
						|
        for z, refs in zip(zs, ref_images):
 | 
						|
            if refs is not None:
 | 
						|
                z = z[:, len(refs):, :, :]
 | 
						|
            trimed_zs.append(z)
 | 
						|
 | 
						|
        return self.vae.decode(trimed_zs, tile_size= tile_size)
 | 
						|
 | 
						|
    def generate(self,
 | 
						|
                input_prompt,
 | 
						|
                input_frames= None,
 | 
						|
                input_masks = None,
 | 
						|
                input_ref_images = None,        
 | 
						|
                context_scale=1.0,
 | 
						|
                size=(1280, 720),
 | 
						|
                frame_num=81,
 | 
						|
                shift=5.0,
 | 
						|
                sample_solver='unipc',
 | 
						|
                sampling_steps=50,
 | 
						|
                guide_scale=5.0,
 | 
						|
                n_prompt="",
 | 
						|
                seed=-1,
 | 
						|
                offload_model=True,
 | 
						|
                callback = None,
 | 
						|
                enable_RIFLEx = None,
 | 
						|
                VAE_tile_size = 0,
 | 
						|
                joint_pass = False,
 | 
						|
                slg_layers = None,
 | 
						|
                slg_start = 0.0,
 | 
						|
                slg_end = 1.0,
 | 
						|
                cfg_star_switch = True,
 | 
						|
                cfg_zero_step = 5,
 | 
						|
                 ):
 | 
						|
        r"""
 | 
						|
        Generates video frames from text prompt using diffusion process.
 | 
						|
 | 
						|
        Args:
 | 
						|
            input_prompt (`str`):
 | 
						|
                Text prompt for content generation
 | 
						|
            size (tupele[`int`], *optional*, defaults to (1280,720)):
 | 
						|
                Controls video resolution, (width,height).
 | 
						|
            frame_num (`int`, *optional*, defaults to 81):
 | 
						|
                How many frames to sample from a video. The number should be 4n+1
 | 
						|
            shift (`float`, *optional*, defaults to 5.0):
 | 
						|
                Noise schedule shift parameter. Affects temporal dynamics
 | 
						|
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
						|
                Solver used to sample the video.
 | 
						|
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
						|
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
						|
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
						|
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
						|
            n_prompt (`str`, *optional*, defaults to ""):
 | 
						|
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
						|
            seed (`int`, *optional*, defaults to -1):
 | 
						|
                Random seed for noise generation. If -1, use random seed.
 | 
						|
            offload_model (`bool`, *optional*, defaults to True):
 | 
						|
                If True, offloads models to CPU during generation to save VRAM
 | 
						|
 | 
						|
        Returns:
 | 
						|
            torch.Tensor:
 | 
						|
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
						|
                - C: Color channels (3 for RGB)
 | 
						|
                - N: Number of frames (81)
 | 
						|
                - H: Frame height (from size)
 | 
						|
                - W: Frame width from size)
 | 
						|
        """
 | 
						|
        # preprocess
 | 
						|
 | 
						|
        if n_prompt == "":
 | 
						|
            n_prompt = self.sample_neg_prompt
 | 
						|
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
						|
        seed_g = torch.Generator(device=self.device)
 | 
						|
        seed_g.manual_seed(seed)
 | 
						|
 | 
						|
        if not self.t5_cpu:
 | 
						|
            # self.text_encoder.model.to(self.device)
 | 
						|
            context = self.text_encoder([input_prompt], self.device)
 | 
						|
            context_null = self.text_encoder([n_prompt], self.device)
 | 
						|
            if offload_model:
 | 
						|
                self.text_encoder.model.cpu()
 | 
						|
        else:
 | 
						|
            context = self.text_encoder([input_prompt], torch.device('cpu'))
 | 
						|
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
 | 
						|
            context = [t.to(self.device) for t in context]
 | 
						|
            context_null = [t.to(self.device) for t in context_null]
 | 
						|
        
 | 
						|
        if input_frames != None:
 | 
						|
            # vace context encode
 | 
						|
            input_frames = [u.to(self.device) for u in input_frames]
 | 
						|
            input_ref_images = [ None if u == None else [v.to(self.device) for v in u]  for u in input_ref_images]
 | 
						|
            input_masks = [u.to(self.device) for u in input_masks]
 | 
						|
 | 
						|
            z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size)
 | 
						|
            m0 = self.vace_encode_masks(input_masks, input_ref_images)
 | 
						|
            z = self.vace_latent(z0, m0)
 | 
						|
 | 
						|
            target_shape = list(z0[0].shape)
 | 
						|
            target_shape[0] = int(target_shape[0] / 2)
 | 
						|
        else:
 | 
						|
            F = frame_num
 | 
						|
            target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
 | 
						|
                            size[1] // self.vae_stride[1],
 | 
						|
                            size[0] // self.vae_stride[2])
 | 
						|
 | 
						|
        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
						|
                            (self.patch_size[1] * self.patch_size[2]) *
 | 
						|
                            target_shape[1] / self.sp_size) * self.sp_size
 | 
						|
 | 
						|
 | 
						|
        noise = [
 | 
						|
            torch.randn(
 | 
						|
                target_shape[0],
 | 
						|
                target_shape[1],
 | 
						|
                target_shape[2],
 | 
						|
                target_shape[3],
 | 
						|
                dtype=torch.float32,
 | 
						|
                device=self.device,
 | 
						|
                generator=seed_g)
 | 
						|
        ]
 | 
						|
 | 
						|
        @contextmanager
 | 
						|
        def noop_no_sync():
 | 
						|
            yield
 | 
						|
 | 
						|
        no_sync = getattr(self.model, 'no_sync', noop_no_sync)
 | 
						|
 | 
						|
        # evaluation mode
 | 
						|
 | 
						|
        if sample_solver == 'unipc':
 | 
						|
            sample_scheduler = FlowUniPCMultistepScheduler(
 | 
						|
                num_train_timesteps=self.num_train_timesteps,
 | 
						|
                shift=1,
 | 
						|
                use_dynamic_shifting=False)
 | 
						|
            sample_scheduler.set_timesteps(
 | 
						|
                sampling_steps, device=self.device, shift=shift)
 | 
						|
            timesteps = sample_scheduler.timesteps
 | 
						|
        elif sample_solver == 'dpm++':
 | 
						|
            sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
						|
                num_train_timesteps=self.num_train_timesteps,
 | 
						|
                shift=1,
 | 
						|
                use_dynamic_shifting=False)
 | 
						|
            sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
						|
            timesteps, _ = retrieve_timesteps(
 | 
						|
                sample_scheduler,
 | 
						|
                device=self.device,
 | 
						|
                sigmas=sampling_sigmas)
 | 
						|
        else:
 | 
						|
            raise NotImplementedError("Unsupported solver.")
 | 
						|
 | 
						|
        # sample videos
 | 
						|
        latents = noise
 | 
						|
        batch_size =len(latents)
 | 
						|
        freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= enable_RIFLEx) 
 | 
						|
        arg_c = {'context': context, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self}
 | 
						|
        arg_null = {'context': context_null, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self}
 | 
						|
        arg_both = {'context': context, 'context2': context_null, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self}
 | 
						|
        if input_frames != None:
 | 
						|
            vace_dict = {'vace_context' : z, 'vace_context_scale' : context_scale}
 | 
						|
            arg_c.update(vace_dict)
 | 
						|
            arg_null.update(vace_dict)
 | 
						|
            arg_both.update(vace_dict)
 | 
						|
 | 
						|
        if self.model.enable_teacache:
 | 
						|
            self.model.compute_teacache_threshold(self.model.teacache_start_step, timesteps, self.model.teacache_multiplier)
 | 
						|
        if callback != None:
 | 
						|
            callback(-1, True)
 | 
						|
        for i, t in enumerate(tqdm(timesteps)):
 | 
						|
            latent_model_input = latents
 | 
						|
            slg_layers_local = None
 | 
						|
            if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps):
 | 
						|
                slg_layers_local = slg_layers
 | 
						|
            timestep = [t]
 | 
						|
            offload.set_step_no_for_lora(self.model, i)
 | 
						|
            timestep = torch.stack(timestep)
 | 
						|
 | 
						|
            # self.model.to(self.device)
 | 
						|
            if joint_pass:
 | 
						|
                noise_pred_cond, noise_pred_uncond = self.model(
 | 
						|
                    latent_model_input, t=timestep,  current_step=i, slg_layers=slg_layers_local, **arg_both)
 | 
						|
                if self._interrupt:
 | 
						|
                    return None
 | 
						|
            else:
 | 
						|
                noise_pred_cond = self.model(
 | 
						|
                    latent_model_input, t=timestep,current_step=i, is_uncond = False, **arg_c)[0]
 | 
						|
                if self._interrupt:
 | 
						|
                    return None               
 | 
						|
                noise_pred_uncond = self.model(
 | 
						|
                    latent_model_input, t=timestep,current_step=i, is_uncond = True, slg_layers=slg_layers_local, **arg_null)[0]
 | 
						|
                if self._interrupt:
 | 
						|
                    return None
 | 
						|
 | 
						|
            del latent_model_input
 | 
						|
 | 
						|
            # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/
 | 
						|
            noise_pred_text = noise_pred_cond
 | 
						|
            if cfg_star_switch:
 | 
						|
                positive_flat = noise_pred_text.view(batch_size, -1)  
 | 
						|
                negative_flat = noise_pred_uncond.view(batch_size, -1)  
 | 
						|
 | 
						|
                alpha = optimized_scale(positive_flat,negative_flat)
 | 
						|
                alpha = alpha.view(batch_size, 1, 1, 1)
 | 
						|
 | 
						|
                if (i <= cfg_zero_step):
 | 
						|
                    noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred...
 | 
						|
                else:
 | 
						|
                    noise_pred_uncond *= alpha
 | 
						|
            noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond)            
 | 
						|
            del noise_pred_uncond
 | 
						|
 | 
						|
            temp_x0 = sample_scheduler.step(
 | 
						|
                noise_pred.unsqueeze(0),
 | 
						|
                t,
 | 
						|
                latents[0].unsqueeze(0),
 | 
						|
                return_dict=False,
 | 
						|
                generator=seed_g)[0]
 | 
						|
            latents = [temp_x0.squeeze(0)]
 | 
						|
            del temp_x0
 | 
						|
 | 
						|
            if callback is not None:
 | 
						|
                callback(i, False)         
 | 
						|
 | 
						|
        x0 = latents
 | 
						|
        if offload_model:
 | 
						|
            self.model.cpu()
 | 
						|
            torch.cuda.empty_cache()
 | 
						|
        if self.rank == 0:
 | 
						|
 | 
						|
            if input_frames == None:
 | 
						|
                videos = self.vae.decode(x0, VAE_tile_size)
 | 
						|
            else:
 | 
						|
                videos = self.decode_latent(x0, input_ref_images, VAE_tile_size)
 | 
						|
 | 
						|
 | 
						|
        del noise, latents
 | 
						|
        del sample_scheduler
 | 
						|
        if offload_model:
 | 
						|
            gc.collect()
 | 
						|
            torch.cuda.synchronize()
 | 
						|
        if dist.is_initialized():
 | 
						|
            dist.barrier()
 | 
						|
 | 
						|
        return videos[0] if self.rank == 0 else None
 | 
						|
 | 
						|
    def adapt_vace_model(self):
 | 
						|
        model = self.model
 | 
						|
        modules_dict= { k: m for k, m in model.named_modules()}
 | 
						|
        for model_layer, vace_layer in model.vace_layers_mapping.items():
 | 
						|
            module = modules_dict[f"vace_blocks.{vace_layer}"]
 | 
						|
            target = modules_dict[f"blocks.{model_layer}"]
 | 
						|
            setattr(target, "vace", module )
 | 
						|
        delattr(model, "vace_blocks")
 | 
						|
                    
 | 
						|
  |