mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			404 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			404 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
import torch
 | 
						|
from importlib.metadata import version
 | 
						|
from mmgp import offload
 | 
						|
import torch.nn.functional as F
 | 
						|
 | 
						|
 | 
						|
try:
 | 
						|
    from xformers.ops import memory_efficient_attention
 | 
						|
except ImportError:
 | 
						|
    memory_efficient_attention = None
 | 
						|
 | 
						|
try:
 | 
						|
    import flash_attn_interface
 | 
						|
    FLASH_ATTN_3_AVAILABLE = True
 | 
						|
except ModuleNotFoundError:
 | 
						|
    FLASH_ATTN_3_AVAILABLE = False
 | 
						|
 | 
						|
try:
 | 
						|
    import flash_attn
 | 
						|
    FLASH_ATTN_2_AVAILABLE = True
 | 
						|
except ModuleNotFoundError:
 | 
						|
    FLASH_ATTN_2_AVAILABLE = False
 | 
						|
    flash_attn = None
 | 
						|
 | 
						|
try:
 | 
						|
    from sageattention import sageattn_varlen
 | 
						|
    def sageattn_varlen_wrapper(
 | 
						|
            q,
 | 
						|
            k,
 | 
						|
            v,
 | 
						|
            cu_seqlens_q,
 | 
						|
            cu_seqlens_kv,
 | 
						|
            max_seqlen_q,
 | 
						|
            max_seqlen_kv,
 | 
						|
        ):
 | 
						|
        return sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
 | 
						|
    
 | 
						|
except ImportError:
 | 
						|
    sageattn_varlen_wrapper = None
 | 
						|
 | 
						|
 | 
						|
import warnings
 | 
						|
 | 
						|
try:
 | 
						|
    from sageattention import sageattn
 | 
						|
    from .sage2_core import sageattn as alt_sageattn, is_sage2_supported
 | 
						|
    sage2_supported =  is_sage2_supported()
 | 
						|
except ImportError:
 | 
						|
    sageattn = None
 | 
						|
    alt_sageattn = None
 | 
						|
    sage2_supported = False
 | 
						|
# @torch.compiler.disable()
 | 
						|
def sageattn_wrapper(
 | 
						|
        qkv_list,
 | 
						|
        attention_length
 | 
						|
    ):
 | 
						|
    q,k, v = qkv_list
 | 
						|
    padding_length = q.shape[0] -attention_length
 | 
						|
    q = q[:attention_length, :, : ].unsqueeze(0)
 | 
						|
    k = k[:attention_length, :, : ].unsqueeze(0)
 | 
						|
    v = v[:attention_length, :, : ].unsqueeze(0)
 | 
						|
    if True:
 | 
						|
        qkv_list = [q,k,v]
 | 
						|
        del q, k ,v
 | 
						|
        o = alt_sageattn(qkv_list, tensor_layout="NHD").squeeze(0)
 | 
						|
    else:
 | 
						|
        o = sageattn(q, k, v, tensor_layout="NHD").squeeze(0)
 | 
						|
        del q, k ,v
 | 
						|
 | 
						|
    qkv_list.clear()
 | 
						|
 | 
						|
    if padding_length > 0:
 | 
						|
        o = torch.cat([o, torch.empty( (padding_length, *o.shape[-2:]), dtype= o.dtype, device=o.device  ) ], 0)
 | 
						|
 | 
						|
    return o
 | 
						|
 | 
						|
# try:
 | 
						|
# if True:
 | 
						|
    # from .sage2_core import sageattn_qk_int8_pv_fp8_window_cuda
 | 
						|
    # @torch.compiler.disable()
 | 
						|
    # def sageattn_window_wrapper(
 | 
						|
    #         qkv_list,
 | 
						|
    #         attention_length,
 | 
						|
    #         window
 | 
						|
    #     ):
 | 
						|
    #     q,k, v = qkv_list
 | 
						|
    #     padding_length = q.shape[0] -attention_length
 | 
						|
    #     q = q[:attention_length, :, : ].unsqueeze(0)
 | 
						|
    #     k = k[:attention_length, :, : ].unsqueeze(0)
 | 
						|
    #     v = v[:attention_length, :, : ].unsqueeze(0)
 | 
						|
    #     qkvl_list = [q, k , v]
 | 
						|
    #     del q, k ,v
 | 
						|
    #     o = sageattn_qk_int8_pv_fp8_window_cuda(qkvl_list, tensor_layout="NHD", window = window).squeeze(0)
 | 
						|
    #     qkv_list.clear()
 | 
						|
 | 
						|
    #     if padding_length > 0:
 | 
						|
    #         o = torch.cat([o, torch.empty( (padding_length, *o.shape[-2:]), dtype= o.dtype, device=o.device  ) ], 0)
 | 
						|
 | 
						|
    #     return o
 | 
						|
# except ImportError:
 | 
						|
#     sageattn = sageattn_qk_int8_pv_fp8_window_cuda
 | 
						|
 | 
						|
@torch.compiler.disable()
 | 
						|
def sdpa_wrapper(
 | 
						|
        qkv_list,
 | 
						|
        attention_length
 | 
						|
    ):
 | 
						|
    q,k, v = qkv_list
 | 
						|
    padding_length = q.shape[0] -attention_length
 | 
						|
    q = q[:attention_length, :].transpose(0,1).unsqueeze(0)
 | 
						|
    k = k[:attention_length, :].transpose(0,1).unsqueeze(0)
 | 
						|
    v = v[:attention_length, :].transpose(0,1).unsqueeze(0)
 | 
						|
 | 
						|
    o = F.scaled_dot_product_attention(
 | 
						|
        q, k, v, attn_mask=None, is_causal=False
 | 
						|
    ).squeeze(0).transpose(0,1)
 | 
						|
    del q, k ,v
 | 
						|
    qkv_list.clear()
 | 
						|
 | 
						|
    if padding_length > 0:
 | 
						|
        o = torch.cat([o, torch.empty( (padding_length, *o.shape[-2:]), dtype= o.dtype, device=o.device  ) ], 0)
 | 
						|
 | 
						|
    return o
 | 
						|
 | 
						|
 | 
						|
def get_attention_modes():
 | 
						|
    ret = ["sdpa", "auto"]
 | 
						|
    if flash_attn != None:
 | 
						|
        ret.append("flash")
 | 
						|
    if memory_efficient_attention != None:
 | 
						|
        ret.append("xformers")
 | 
						|
    if sageattn_varlen_wrapper != None:
 | 
						|
        ret.append("sage")
 | 
						|
    if sageattn != None and version("sageattention").startswith("2") :
 | 
						|
        ret.append("sage2")
 | 
						|
        
 | 
						|
    return ret
 | 
						|
 | 
						|
def get_supported_attention_modes():
 | 
						|
    ret = get_attention_modes()
 | 
						|
    if not sage2_supported:
 | 
						|
        if "sage2" in ret:
 | 
						|
            ret.remove("sage2")
 | 
						|
    return ret
 | 
						|
 | 
						|
__all__ = [
 | 
						|
    'pay_attention',
 | 
						|
    'attention',
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def pay_attention(
 | 
						|
    qkv_list,
 | 
						|
    # q,
 | 
						|
    # k,
 | 
						|
    # v,
 | 
						|
    q_lens=None,
 | 
						|
    k_lens=None,
 | 
						|
    dropout_p=0.,
 | 
						|
    softmax_scale=None,
 | 
						|
    q_scale=None,
 | 
						|
    causal=False,
 | 
						|
    window_size=(-1, -1),
 | 
						|
    deterministic=False,
 | 
						|
    dtype=torch.bfloat16,
 | 
						|
    version=None,
 | 
						|
    force_attention= None,
 | 
						|
    cross_attn= False
 | 
						|
):
 | 
						|
    """
 | 
						|
    q:              [B, Lq, Nq, C1].
 | 
						|
    k:              [B, Lk, Nk, C1].
 | 
						|
    v:              [B, Lk, Nk, C2]. Nq must be divisible by Nk.
 | 
						|
    q_lens:         [B].
 | 
						|
    k_lens:         [B].
 | 
						|
    dropout_p:      float. Dropout probability.
 | 
						|
    softmax_scale:  float. The scaling of QK^T before applying softmax.
 | 
						|
    causal:         bool. Whether to apply causal attention mask.
 | 
						|
    window_size:    (left right). If not (-1, -1), apply sliding window local attention.
 | 
						|
    deterministic:  bool. If True, slightly slower and uses more memory.
 | 
						|
    dtype:          torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
 | 
						|
    """
 | 
						|
 | 
						|
    attn = offload.shared_state["_attention"] if force_attention== None else force_attention
 | 
						|
    q,k,v = qkv_list
 | 
						|
    qkv_list.clear()
 | 
						|
 | 
						|
    half_dtypes = (torch.float16, torch.bfloat16)
 | 
						|
    assert dtype in half_dtypes
 | 
						|
    assert q.device.type == 'cuda' and q.size(-1) <= 256
 | 
						|
 | 
						|
    # params
 | 
						|
    b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
 | 
						|
 | 
						|
    def half(x):
 | 
						|
        return x if x.dtype in half_dtypes else x.to(dtype)
 | 
						|
 | 
						|
    # preprocess query
 | 
						|
    if q_lens is None:
 | 
						|
        q = half(q.flatten(0, 1))
 | 
						|
        q_lens = torch.tensor(
 | 
						|
            [lq] * b, dtype=torch.int32).to(
 | 
						|
                device=q.device, non_blocking=True)
 | 
						|
    else:
 | 
						|
        q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
 | 
						|
 | 
						|
    # preprocess key, value
 | 
						|
    if k_lens is None:
 | 
						|
        k = half(k.flatten(0, 1))
 | 
						|
        v = half(v.flatten(0, 1))
 | 
						|
        k_lens = torch.tensor(
 | 
						|
            [lk] * b, dtype=torch.int32).to(
 | 
						|
                device=k.device, non_blocking=True)
 | 
						|
    else:
 | 
						|
        k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
 | 
						|
        v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
 | 
						|
 | 
						|
    q = q.to(v.dtype)
 | 
						|
    k = k.to(v.dtype)
 | 
						|
 | 
						|
    if q_scale is not None:
 | 
						|
        q = q * q_scale
 | 
						|
 | 
						|
    if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
 | 
						|
        warnings.warn(
 | 
						|
            'Flash attention 3 is not available, use flash attention 2 instead.'
 | 
						|
        )
 | 
						|
 | 
						|
    # apply attention
 | 
						|
    if attn=="sage":
 | 
						|
        x = sageattn_varlen_wrapper(
 | 
						|
            q=q,
 | 
						|
            k=k,
 | 
						|
            v=v,
 | 
						|
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            cu_seqlens_kv=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            max_seqlen_q=lq,
 | 
						|
            max_seqlen_kv=lk,
 | 
						|
        ).unflatten(0, (b, lq))
 | 
						|
    elif attn=="sage2":
 | 
						|
        import math
 | 
						|
        if cross_attn or True:
 | 
						|
            qkv_list = [q,k,v]
 | 
						|
            del q,k,v
 | 
						|
 | 
						|
            x = sageattn_wrapper(qkv_list, lq).unsqueeze(0)
 | 
						|
        # else:
 | 
						|
        #     layer =  offload.shared_state["layer"]
 | 
						|
        #     embed_sizes = offload.shared_state["embed_sizes"] 
 | 
						|
        #     current_step = offload.shared_state["step_no"] 
 | 
						|
        #     max_steps = offload.shared_state["max_steps"]  
 | 
						|
 | 
						|
 | 
						|
        #     nb_latents =  embed_sizes[0] * embed_sizes[1]* embed_sizes[2]
 | 
						|
 | 
						|
        #     window = 0
 | 
						|
        #     start_window_step = int(max_steps * 0.3)
 | 
						|
        #     start_layer = 10
 | 
						|
        #     end_layer = 30
 | 
						|
        #     if (layer < start_layer or layer > end_layer )  or current_step <start_window_step: 
 | 
						|
        #         window = 0
 | 
						|
        #     else:
 | 
						|
        #         # coef =  min((max_steps - current_step)/(max_steps-start_window_step),1)*max(min((25 - layer)/(25-start_layer),1),0) * 0.7 + 0.3
 | 
						|
        #         coef = 0.3
 | 
						|
        #         print(f"step: {current_step}, layer: {layer}, coef:{coef:0.1f}]")
 | 
						|
        #         window =  math.ceil(coef* nb_latents)
 | 
						|
 | 
						|
        #     invert_spaces = (layer + current_step) % 2 == 0 and window > 0
 | 
						|
        #     invert_spaces = False
 | 
						|
        #     def flip(q):
 | 
						|
        #         q = q.reshape(*embed_sizes, *q.shape[-2:])
 | 
						|
        #         q = q.transpose(0,2)
 | 
						|
        #         q = q.contiguous()
 | 
						|
        #         q = q.transpose(0,2)
 | 
						|
        #         q = q.reshape( -1, *q.shape[-2:])
 | 
						|
        #         return q
 | 
						|
 | 
						|
        #     def flop(q):
 | 
						|
        #         q = q.reshape(embed_sizes[2], embed_sizes[1], embed_sizes[0] , *q.shape[-2:])
 | 
						|
        #         q = q.transpose(0,2)
 | 
						|
        #         q = q.contiguous()
 | 
						|
        #         q = q.transpose(0,2)
 | 
						|
        #         q = q.reshape( -1, *q.shape[-2:])
 | 
						|
        #         return q
 | 
						|
 | 
						|
 | 
						|
        #     if invert_spaces:
 | 
						|
 | 
						|
        #         q = flip(q)
 | 
						|
        #         k = flip(k)
 | 
						|
        #         v = flip(v)            
 | 
						|
        #     qkv_list = [q,k,v]
 | 
						|
        #     del q,k,v
 | 
						|
 | 
						|
 | 
						|
 | 
						|
        #     x = sageattn_window_wrapper(qkv_list, lq, window= window) #.unsqueeze(0)
 | 
						|
 | 
						|
        #     if invert_spaces:
 | 
						|
        #         x = flop(x)
 | 
						|
        #     x = x.unsqueeze(0)
 | 
						|
 | 
						|
        
 | 
						|
    elif attn=="sdpa":
 | 
						|
        qkv_list = [q, k, v]
 | 
						|
        del q, k , v
 | 
						|
        x = sdpa_wrapper( qkv_list, lq).unsqueeze(0)
 | 
						|
    elif attn=="flash" and version == 3:
 | 
						|
        # Note: dropout_p, window_size are not supported in FA3 now.
 | 
						|
        x = flash_attn_interface.flash_attn_varlen_func(
 | 
						|
            q=q,
 | 
						|
            k=k,
 | 
						|
            v=v,
 | 
						|
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            seqused_q=None,
 | 
						|
            seqused_k=None,
 | 
						|
            max_seqlen_q=lq,
 | 
						|
            max_seqlen_k=lk,
 | 
						|
            softmax_scale=softmax_scale,
 | 
						|
            causal=causal,
 | 
						|
            deterministic=deterministic)[0].unflatten(0, (b, lq))
 | 
						|
    elif attn=="flash":
 | 
						|
        x = flash_attn.flash_attn_varlen_func(
 | 
						|
            q=q,
 | 
						|
            k=k,
 | 
						|
            v=v,
 | 
						|
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            max_seqlen_q=lq,
 | 
						|
            max_seqlen_k=lk,
 | 
						|
            dropout_p=dropout_p,
 | 
						|
            softmax_scale=softmax_scale,
 | 
						|
            causal=causal,
 | 
						|
            window_size=window_size,
 | 
						|
            deterministic=deterministic).unflatten(0, (b, lq))
 | 
						|
 | 
						|
    # output
 | 
						|
 | 
						|
    elif attn=="xformers":
 | 
						|
        x = memory_efficient_attention(
 | 
						|
            q.unsqueeze(0),
 | 
						|
            k.unsqueeze(0),
 | 
						|
            v.unsqueeze(0),
 | 
						|
        ) #.unsqueeze(0)    
 | 
						|
    
 | 
						|
    return x.type(out_dtype)
 | 
						|
 | 
						|
 | 
						|
def attention(
 | 
						|
    q,
 | 
						|
    k,
 | 
						|
    v,
 | 
						|
    q_lens=None,
 | 
						|
    k_lens=None,
 | 
						|
    dropout_p=0.,
 | 
						|
    softmax_scale=None,
 | 
						|
    q_scale=None,
 | 
						|
    causal=False,
 | 
						|
    window_size=(-1, -1),
 | 
						|
    deterministic=False,
 | 
						|
    dtype=torch.bfloat16,
 | 
						|
    fa_version=None,
 | 
						|
):
 | 
						|
    if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
 | 
						|
        return pay_attention(
 | 
						|
            q=q,
 | 
						|
            k=k,
 | 
						|
            v=v,
 | 
						|
            q_lens=q_lens,
 | 
						|
            k_lens=k_lens,
 | 
						|
            dropout_p=dropout_p,
 | 
						|
            softmax_scale=softmax_scale,
 | 
						|
            q_scale=q_scale,
 | 
						|
            causal=causal,
 | 
						|
            window_size=window_size,
 | 
						|
            deterministic=deterministic,
 | 
						|
            dtype=dtype,
 | 
						|
            version=fa_version,
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        if q_lens is not None or k_lens is not None:
 | 
						|
            warnings.warn(
 | 
						|
                'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
 | 
						|
            )
 | 
						|
        attn_mask = None
 | 
						|
 | 
						|
        q = q.transpose(1, 2).to(dtype)
 | 
						|
        k = k.transpose(1, 2).to(dtype)
 | 
						|
        v = v.transpose(1, 2).to(dtype)
 | 
						|
 | 
						|
        out = torch.nn.functional.scaled_dot_product_attention(
 | 
						|
            q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
 | 
						|
 | 
						|
        out = out.transpose(1, 2).contiguous()
 | 
						|
        return out
 |