mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			119 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Bash
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Bash
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env bash
 | 
						||
export HOME=/home/user
 | 
						||
export PYTHONUNBUFFERED=1
 | 
						||
export HF_HOME=/home/user/.cache/huggingface
 | 
						||
 | 
						||
export OMP_NUM_THREADS=$(nproc)
 | 
						||
export MKL_NUM_THREADS=$(nproc)
 | 
						||
export OPENBLAS_NUM_THREADS=$(nproc)
 | 
						||
export NUMEXPR_NUM_THREADS=$(nproc)
 | 
						||
 | 
						||
export TORCH_ALLOW_TF32_CUBLAS=1
 | 
						||
export TORCH_ALLOW_TF32_CUDNN=1
 | 
						||
 | 
						||
# Disable audio warnings in Docker
 | 
						||
export SDL_AUDIODRIVER=dummy
 | 
						||
export PULSE_RUNTIME_PATH=/tmp/pulse-runtime
 | 
						||
 | 
						||
# ═══════════════════════════ CUDA DEBUG CHECKS ═══════════════════════════
 | 
						||
 | 
						||
echo "🔍 CUDA Environment Debug Information:"
 | 
						||
echo "═══════════════════════════════════════════════════════════════════════"
 | 
						||
 | 
						||
# Check CUDA driver on host (if accessible)
 | 
						||
if command -v nvidia-smi >/dev/null 2>&1; then
 | 
						||
    echo "✅ nvidia-smi available"
 | 
						||
    echo "📊 GPU Information:"
 | 
						||
    nvidia-smi --query-gpu=name,driver_version,memory.total,memory.free --format=csv,noheader,nounits 2>/dev/null || echo "❌ nvidia-smi failed to query GPU"
 | 
						||
    echo "🏃 Running Processes:"
 | 
						||
    nvidia-smi --query-compute-apps=pid,name,used_memory --format=csv,noheader,nounits 2>/dev/null || echo "ℹ️  No running CUDA processes"
 | 
						||
else
 | 
						||
    echo "❌ nvidia-smi not available in container"
 | 
						||
fi
 | 
						||
 | 
						||
# Check CUDA runtime libraries
 | 
						||
echo ""
 | 
						||
echo "🔧 CUDA Runtime Check:"
 | 
						||
if ls /usr/local/cuda*/lib*/libcudart.so* >/dev/null 2>&1; then
 | 
						||
    echo "✅ CUDA runtime libraries found:"
 | 
						||
    ls /usr/local/cuda*/lib*/libcudart.so* 2>/dev/null
 | 
						||
else
 | 
						||
    echo "❌ CUDA runtime libraries not found"
 | 
						||
fi
 | 
						||
 | 
						||
# Check CUDA devices
 | 
						||
echo ""
 | 
						||
echo "🖥️  CUDA Device Files:"
 | 
						||
if ls /dev/nvidia* >/dev/null 2>&1; then
 | 
						||
    echo "✅ NVIDIA device files found:"
 | 
						||
    ls -la /dev/nvidia* 2>/dev/null
 | 
						||
else
 | 
						||
    echo "❌ No NVIDIA device files found - Docker may not have GPU access"
 | 
						||
fi
 | 
						||
 | 
						||
# Check CUDA environment variables
 | 
						||
echo ""
 | 
						||
echo "🌍 CUDA Environment Variables:"
 | 
						||
echo "   CUDA_HOME: ${CUDA_HOME:-not set}"
 | 
						||
echo "   CUDA_ROOT: ${CUDA_ROOT:-not set}"
 | 
						||
echo "   CUDA_PATH: ${CUDA_PATH:-not set}"
 | 
						||
echo "   LD_LIBRARY_PATH: ${LD_LIBRARY_PATH:-not set}"
 | 
						||
echo "   TORCH_CUDA_ARCH_LIST: ${TORCH_CUDA_ARCH_LIST:-not set}"
 | 
						||
echo "   CUDA_VISIBLE_DEVICES: ${CUDA_VISIBLE_DEVICES:-not set}"
 | 
						||
 | 
						||
# Check PyTorch CUDA availability
 | 
						||
echo ""
 | 
						||
echo "🐍 PyTorch CUDA Check:"
 | 
						||
python3 -c "
 | 
						||
import sys
 | 
						||
try:
 | 
						||
    import torch
 | 
						||
    print('✅ PyTorch imported successfully')
 | 
						||
    print(f'   Version: {torch.__version__}')
 | 
						||
    print(f'   CUDA available: {torch.cuda.is_available()}')
 | 
						||
    if torch.cuda.is_available():
 | 
						||
        print(f'   CUDA version: {torch.version.cuda}')
 | 
						||
        print(f'   cuDNN version: {torch.backends.cudnn.version()}')
 | 
						||
        print(f'   Device count: {torch.cuda.device_count()}')
 | 
						||
        for i in range(torch.cuda.device_count()):
 | 
						||
            props = torch.cuda.get_device_properties(i)
 | 
						||
            print(f'   Device {i}: {props.name} (SM {props.major}.{props.minor}, {props.total_memory//1024//1024}MB)')
 | 
						||
    else:
 | 
						||
        print('❌ CUDA not available to PyTorch')
 | 
						||
        print('   This could mean:')
 | 
						||
        print('   - CUDA runtime not properly installed')
 | 
						||
        print('   - GPU not accessible to container')
 | 
						||
        print('   - Driver/runtime version mismatch')
 | 
						||
except ImportError as e:
 | 
						||
    print(f'❌ Failed to import PyTorch: {e}')
 | 
						||
except Exception as e:
 | 
						||
    print(f'❌ PyTorch CUDA check failed: {e}')
 | 
						||
" 2>&1
 | 
						||
 | 
						||
# Check for common CUDA issues
 | 
						||
echo ""
 | 
						||
echo "🩺 Common Issue Diagnostics:"
 | 
						||
 | 
						||
# Check if running with proper Docker flags
 | 
						||
if [ ! -e /dev/nvidia0 ] && [ ! -e /dev/nvidiactl ]; then
 | 
						||
    echo "❌ No NVIDIA device nodes - container likely missing --gpus all or --runtime=nvidia"
 | 
						||
fi
 | 
						||
 | 
						||
# Check CUDA library paths
 | 
						||
if [ -z "$LD_LIBRARY_PATH" ] || ! echo "$LD_LIBRARY_PATH" | grep -q cuda; then
 | 
						||
    echo "⚠️  LD_LIBRARY_PATH may not include CUDA libraries"
 | 
						||
fi
 | 
						||
 | 
						||
# Check permissions on device files
 | 
						||
if ls /dev/nvidia* >/dev/null 2>&1; then
 | 
						||
    if ! ls -la /dev/nvidia* | grep -q "rw-rw-rw-\|rw-r--r--"; then
 | 
						||
        echo "⚠️  NVIDIA device files may have restrictive permissions"
 | 
						||
    fi
 | 
						||
fi
 | 
						||
 | 
						||
echo "═══════════════════════════════════════════════════════════════════════"
 | 
						||
echo "🚀 Starting application..."
 | 
						||
echo ""
 | 
						||
 | 
						||
exec su -p user -c "python3 wgp.py --listen $*"
 |