Wan2.1/models/wan/diffusion_forcing copy.py
2025-08-06 20:38:13 +02:00

480 lines
24 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
import os
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import logging
import numpy as np
import torch
from diffusers.image_processor import PipelineImageInput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from tqdm import tqdm
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
from wan.modules.posemb_layers import get_rotary_pos_embed
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
class DTT2V:
def __init__(
self,
config,
checkpoint_dir,
rank=0,
model_filename = None,
text_encoder_filename = None,
quantizeTransformer = False,
dtype = torch.bfloat16,
):
self.device = torch.device(f"cuda")
self.config = config
self.rank = rank
self.dtype = dtype
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=text_encoder_filename,
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn= None)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
device=self.device)
logging.info(f"Creating WanModel from {model_filename}")
from mmgp import offload
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False, forcedConfigPath="config.json")
# offload.load_model_data(self.model, "recam.ckpt")
# self.model.cpu()
# offload.save_model(self.model, "recam.safetensors")
if self.dtype == torch.float16 and not "fp16" in model_filename:
self.model.to(self.dtype)
# offload.save_model(self.model, "t2v_fp16.safetensors",do_quantize=True)
if self.dtype == torch.float16:
self.vae.model.to(self.dtype)
self.model.eval().requires_grad_(False)
self.scheduler = FlowUniPCMultistepScheduler()
@property
def do_classifier_free_guidance(self) -> bool:
return self._guidance_scale > 1
def encode_image(
self, image: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# prefix_video
prefix_video = np.array(image.resize((width, height))).transpose(2, 0, 1)
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
if prefix_video.dtype == torch.uint8:
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
prefix_video = prefix_video.to(self.device)
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]] # [(c, f, h, w)]
if prefix_video[0].shape[1] % causal_block_size != 0:
truncate_len = prefix_video[0].shape[1] % causal_block_size
print("the length of prefix video is truncated for the casual block size alignment.")
prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
predix_video_latent_length = prefix_video[0].shape[1]
return prefix_video, predix_video_latent_length
def prepare_latents(
self,
shape: Tuple[int],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
) -> torch.Tensor:
return randn_tensor(shape, generator, device=device, dtype=dtype)
def generate_timestep_matrix(
self,
num_frames,
step_template,
base_num_frames,
ar_step=5,
num_pre_ready=0,
casual_block_size=1,
shrink_interval_with_mask=False,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
step_matrix, step_index = [], []
update_mask, valid_interval = [], []
num_iterations = len(step_template) + 1
num_frames_block = num_frames // casual_block_size
base_num_frames_block = base_num_frames // casual_block_size
if base_num_frames_block < num_frames_block:
infer_step_num = len(step_template)
gen_block = base_num_frames_block
min_ar_step = infer_step_num / gen_block
assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
# print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
step_template = torch.cat(
[
torch.tensor([999], dtype=torch.int64, device=step_template.device),
step_template.long(),
torch.tensor([0], dtype=torch.int64, device=step_template.device),
]
) # to handle the counter in row works starting from 1
pre_row = torch.zeros(num_frames_block, dtype=torch.long)
if num_pre_ready > 0:
pre_row[: num_pre_ready // casual_block_size] = num_iterations
while torch.all(pre_row >= (num_iterations - 1)) == False:
new_row = torch.zeros(num_frames_block, dtype=torch.long)
for i in range(num_frames_block):
if i == 0 or pre_row[i - 1] >= (
num_iterations - 1
): # the first frame or the last frame is completely denoised
new_row[i] = pre_row[i] + 1
else:
new_row[i] = new_row[i - 1] - ar_step
new_row = new_row.clamp(0, num_iterations)
update_mask.append(
(new_row != pre_row) & (new_row != num_iterations)
) # False: no need to update True: need to update
step_index.append(new_row)
step_matrix.append(step_template[new_row])
pre_row = new_row
# for long video we split into several sequences, base_num_frames is set to the model max length (for training)
terminal_flag = base_num_frames_block
if shrink_interval_with_mask:
idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
update_mask = update_mask[0]
update_mask_idx = idx_sequence[update_mask]
last_update_idx = update_mask_idx[-1].item()
terminal_flag = last_update_idx + 1
# for i in range(0, len(update_mask)):
for curr_mask in update_mask:
if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
terminal_flag += 1
valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
step_update_mask = torch.stack(update_mask, dim=0)
step_index = torch.stack(step_index, dim=0)
step_matrix = torch.stack(step_matrix, dim=0)
if casual_block_size > 1:
step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
return step_matrix, step_index, step_update_mask, valid_interval
@torch.no_grad()
def generate(
self,
prompt: Union[str, List[str]],
negative_prompt: Union[str, List[str]] = "",
image: PipelineImageInput = None,
height: int = 480,
width: int = 832,
num_frames: int = 97,
num_inference_steps: int = 50,
shift: float = 1.0,
guidance_scale: float = 5.0,
seed: float = 0.0,
overlap_history: int = 17,
addnoise_condition: int = 0,
base_num_frames: int = 97,
ar_step: int = 5,
causal_block_size: int = 1,
causal_attention: bool = False,
fps: int = 24,
VAE_tile_size = 0,
joint_pass = False,
callback = None,
):
generator = torch.Generator(device=self.device)
generator.manual_seed(seed)
# if base_num_frames > base_num_frames:
# causal_block_size = 0
self._guidance_scale = guidance_scale
i2v_extra_kwrags = {}
prefix_video = None
predix_video_latent_length = 0
if image:
frame_width, frame_height = image.size
scale = min(height / frame_height, width / frame_width)
height = (int(frame_height * scale) // 16) * 16
width = (int(frame_width * scale) // 16) * 16
prefix_video, predix_video_latent_length = self.encode_image(image, height, width, num_frames, tile_size=VAE_tile_size, causal_block_size=causal_block_size)
latent_length = (num_frames - 1) // 4 + 1
latent_height = height // 8
latent_width = width // 8
prompt_embeds = self.text_encoder([prompt], self.device)
prompt_embeds = [u.to(self.dtype).to(self.device) for u in prompt_embeds]
if self.do_classifier_free_guidance:
negative_prompt_embeds = self.text_encoder([negative_prompt], self.device)
negative_prompt_embeds = [u.to(self.dtype).to(self.device) for u in negative_prompt_embeds]
self.scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
init_timesteps = self.scheduler.timesteps
fps_embeds = [fps] * prompt_embeds[0].shape[0]
fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
transformer_dtype = self.dtype
# with torch.cuda.amp.autocast(dtype=self.dtype), torch.no_grad():
if overlap_history is None or base_num_frames is None or num_frames <= base_num_frames:
# short video generation
latent_shape = [16, latent_length, latent_height, latent_width]
latents = self.prepare_latents(
latent_shape, dtype=torch.float32, device=self.device, generator=generator
)
latents = [latents]
if prefix_video is not None:
latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32)
base_num_frames = (base_num_frames - 1) // 4 + 1 if base_num_frames is not None else latent_length
step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
latent_length, init_timesteps, base_num_frames, ar_step, predix_video_latent_length, causal_block_size
)
sample_schedulers = []
for _ in range(latent_length):
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
)
sample_scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
sample_schedulers.append(sample_scheduler)
sample_schedulers_counter = [0] * latent_length
if callback != None:
callback(-1, None, True)
freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= False)
for i, timestep_i in enumerate(tqdm(step_matrix)):
update_mask_i = step_update_mask[i]
valid_interval_i = valid_interval[i]
valid_interval_start, valid_interval_end = valid_interval_i
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
noise_factor = 0.001 * addnoise_condition
timestep_for_noised_condition = addnoise_condition
latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
latent_model_input[0][:, valid_interval_start:predix_video_latent_length] * (1.0 - noise_factor)
+ torch.randn_like(latent_model_input[0][:, valid_interval_start:predix_video_latent_length])
* noise_factor
)
timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
kwrags = {
"x" : torch.stack([latent_model_input[0]]),
"t" : timestep,
"freqs" :freqs,
"fps" : fps_embeds,
# "causal_block_size" : causal_block_size,
"callback" : callback,
"pipeline" : self
}
kwrags.update(i2v_extra_kwrags)
if not self.do_classifier_free_guidance:
noise_pred = self.model(
context=prompt_embeds,
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred= noise_pred.to(torch.float32)
else:
if joint_pass:
noise_pred_cond, noise_pred_uncond = self.model(
context=prompt_embeds,
context2=negative_prompt_embeds,
**kwrags,
)
if self._interrupt:
return None
else:
noise_pred_cond = self.model(
context=prompt_embeds,
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred_uncond = self.model(
context=negative_prompt_embeds,
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred_cond= noise_pred_cond.to(torch.float32)
noise_pred_uncond= noise_pred_uncond.to(torch.float32)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
del noise_pred_cond, noise_pred_uncond
for idx in range(valid_interval_start, valid_interval_end):
if update_mask_i[idx].item():
latents[0][:, idx] = sample_schedulers[idx].step(
noise_pred[:, idx - valid_interval_start],
timestep_i[idx],
latents[0][:, idx],
return_dict=False,
generator=generator,
)[0]
sample_schedulers_counter[idx] += 1
if callback is not None:
callback(i, latents[0], False)
x0 = latents[0].unsqueeze(0)
videos = self.vae.decode(x0, tile_size= VAE_tile_size)
videos = (videos / 2 + 0.5).clamp(0, 1)
videos = [video for video in videos]
videos = [video.permute(1, 2, 3, 0) * 255 for video in videos]
videos = [video.cpu().numpy().astype(np.uint8) for video in videos]
return videos
else:
# long video generation
base_num_frames = (base_num_frames - 1) // 4 + 1 if base_num_frames is not None else latent_length
overlap_history_frames = (overlap_history - 1) // 4 + 1
n_iter = 1 + (latent_length - base_num_frames - 1) // (base_num_frames - overlap_history_frames) + 1
print(f"n_iter:{n_iter}")
output_video = None
for i in range(n_iter):
if output_video is not None: # i !=0
prefix_video = output_video[:, -overlap_history:].to(self.device)
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0))[0]] # [(c, f, h, w)]
if prefix_video[0].shape[1] % causal_block_size != 0:
truncate_len = prefix_video[0].shape[1] % causal_block_size
print("the length of prefix video is truncated for the casual block size alignment.")
prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
predix_video_latent_length = prefix_video[0].shape[1]
finished_frame_num = i * (base_num_frames - overlap_history_frames) + overlap_history_frames
left_frame_num = latent_length - finished_frame_num
base_num_frames_iter = min(left_frame_num + overlap_history_frames, base_num_frames)
else: # i == 0
base_num_frames_iter = base_num_frames
latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
latents = self.prepare_latents(
latent_shape, dtype=torch.float32, device=self.device, generator=generator
)
latents = [latents]
if prefix_video is not None:
latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32)
step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
base_num_frames_iter,
init_timesteps,
base_num_frames_iter,
ar_step,
predix_video_latent_length,
causal_block_size,
)
sample_schedulers = []
for _ in range(base_num_frames_iter):
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
)
sample_scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
sample_schedulers.append(sample_scheduler)
sample_schedulers_counter = [0] * base_num_frames_iter
if callback != None:
callback(-1, None, True)
freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= False)
for i, timestep_i in enumerate(tqdm(step_matrix)):
update_mask_i = step_update_mask[i]
valid_interval_i = valid_interval[i]
valid_interval_start, valid_interval_end = valid_interval_i
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
noise_factor = 0.001 * addnoise_condition
timestep_for_noised_condition = addnoise_condition
latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
* (1.0 - noise_factor)
+ torch.randn_like(
latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
)
* noise_factor
)
timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
kwrags = {
"x" : torch.stack([latent_model_input[0]]),
"t" : timestep,
"freqs" :freqs,
"fps" : fps_embeds,
"causal_block_size" : causal_block_size,
"causal_attention" : causal_attention,
"callback" : callback,
"pipeline" : self
}
kwrags.update(i2v_extra_kwrags)
if not self.do_classifier_free_guidance:
noise_pred = self.model(
context=prompt_embeds,
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred= noise_pred.to(torch.float32)
else:
if joint_pass:
noise_pred_cond, noise_pred_uncond = self.model(
context=prompt_embeds,
context2=negative_prompt_embeds,
**kwrags,
)
if self._interrupt:
return None
else:
noise_pred_cond = self.model(
context=prompt_embeds,
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred_uncond = self.model(
context=negative_prompt_embeds,
)[0]
if self._interrupt:
return None
noise_pred_cond= noise_pred_cond.to(torch.float32)
noise_pred_uncond= noise_pred_uncond.to(torch.float32)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
del noise_pred_cond, noise_pred_uncond
for idx in range(valid_interval_start, valid_interval_end):
if update_mask_i[idx].item():
latents[0][:, idx] = sample_schedulers[idx].step(
noise_pred[:, idx - valid_interval_start],
timestep_i[idx],
latents[0][:, idx],
return_dict=False,
generator=generator,
)[0]
sample_schedulers_counter[idx] += 1
if callback is not None:
callback(i, latents[0].squeeze(0), False)
x0 = latents[0].unsqueeze(0)
videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]]
if output_video is None:
output_video = videos[0].clamp(-1, 1).cpu() # c, f, h, w
else:
output_video = torch.cat(
[output_video, videos[0][:, overlap_history:].clamp(-1, 1).cpu()], 1
) # c, f, h, w
return output_video