mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			308 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			308 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Modified from ``https://github.com/wyhsirius/LIA``
 | 
						|
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
import torch
 | 
						|
import torch.nn as nn
 | 
						|
from torch.nn import functional as F
 | 
						|
import math
 | 
						|
 | 
						|
def custom_qr(input_tensor):
 | 
						|
    original_dtype = input_tensor.dtype
 | 
						|
    if original_dtype in [torch.bfloat16, torch.float16]:
 | 
						|
        q, r = torch.linalg.qr(input_tensor.to(torch.float32))
 | 
						|
        return q.to(original_dtype), r.to(original_dtype)
 | 
						|
    return torch.linalg.qr(input_tensor)
 | 
						|
 | 
						|
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
 | 
						|
	return F.leaky_relu(input + bias, negative_slope) * scale
 | 
						|
 | 
						|
 | 
						|
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
 | 
						|
	_, minor, in_h, in_w = input.shape
 | 
						|
	kernel_h, kernel_w = kernel.shape
 | 
						|
 | 
						|
	out = input.view(-1, minor, in_h, 1, in_w, 1)
 | 
						|
	out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
 | 
						|
	out = out.view(-1, minor, in_h * up_y, in_w * up_x)
 | 
						|
 | 
						|
	out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
 | 
						|
	out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0),
 | 
						|
		  max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]
 | 
						|
 | 
						|
	out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
 | 
						|
	w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
 | 
						|
	out = F.conv2d(out, w)
 | 
						|
	out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
 | 
						|
					  in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
 | 
						|
	return out[:, :, ::down_y, ::down_x]
 | 
						|
 | 
						|
 | 
						|
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
 | 
						|
	return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
 | 
						|
 | 
						|
 | 
						|
def make_kernel(k):
 | 
						|
	k = torch.tensor(k, dtype=torch.float32)
 | 
						|
	if k.ndim == 1:
 | 
						|
		k = k[None, :] * k[:, None]
 | 
						|
	k /= k.sum()
 | 
						|
	return k
 | 
						|
 | 
						|
 | 
						|
class FusedLeakyReLU(nn.Module):
 | 
						|
	def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
 | 
						|
		super().__init__()
 | 
						|
		self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
 | 
						|
		self.negative_slope = negative_slope
 | 
						|
		self.scale = scale
 | 
						|
 | 
						|
	def forward(self, input):
 | 
						|
		out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
 | 
						|
		return out
 | 
						|
 | 
						|
 | 
						|
class Blur(nn.Module):
 | 
						|
	def __init__(self, kernel, pad, upsample_factor=1):
 | 
						|
		super().__init__()
 | 
						|
 | 
						|
		kernel = make_kernel(kernel)
 | 
						|
 | 
						|
		if upsample_factor > 1:
 | 
						|
			kernel = kernel * (upsample_factor ** 2)
 | 
						|
 | 
						|
		self.register_buffer('kernel', kernel)
 | 
						|
 | 
						|
		self.pad = pad
 | 
						|
 | 
						|
	def forward(self, input):
 | 
						|
		return upfirdn2d(input, self.kernel, pad=self.pad)
 | 
						|
 | 
						|
 | 
						|
class ScaledLeakyReLU(nn.Module):
 | 
						|
	def __init__(self, negative_slope=0.2):
 | 
						|
		super().__init__()
 | 
						|
 | 
						|
		self.negative_slope = negative_slope
 | 
						|
 | 
						|
	def forward(self, input):
 | 
						|
		return F.leaky_relu(input, negative_slope=self.negative_slope)
 | 
						|
 | 
						|
 | 
						|
class EqualConv2d(nn.Module):
 | 
						|
	def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
 | 
						|
		super().__init__()
 | 
						|
 | 
						|
		self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
 | 
						|
		self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
 | 
						|
 | 
						|
		self.stride = stride
 | 
						|
		self.padding = padding
 | 
						|
 | 
						|
		if bias:
 | 
						|
			self.bias = nn.Parameter(torch.zeros(out_channel))
 | 
						|
		else:
 | 
						|
			self.bias = None
 | 
						|
 | 
						|
	def forward(self, input):
 | 
						|
 | 
						|
		return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding)
 | 
						|
 | 
						|
	def __repr__(self):
 | 
						|
		return (
 | 
						|
			f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
 | 
						|
			f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
 | 
						|
		)
 | 
						|
 | 
						|
 | 
						|
class EqualLinear(nn.Module):
 | 
						|
	def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
 | 
						|
		super().__init__()
 | 
						|
 | 
						|
		self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
 | 
						|
 | 
						|
		if bias:
 | 
						|
			self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
 | 
						|
		else:
 | 
						|
			self.bias = None
 | 
						|
 | 
						|
		self.activation = activation
 | 
						|
 | 
						|
		self.scale = (1 / math.sqrt(in_dim)) * lr_mul
 | 
						|
		self.lr_mul = lr_mul
 | 
						|
 | 
						|
	def forward(self, input):
 | 
						|
 | 
						|
		if self.activation:
 | 
						|
			out = F.linear(input, self.weight * self.scale)
 | 
						|
			out = fused_leaky_relu(out, self.bias * self.lr_mul)
 | 
						|
		else:
 | 
						|
			out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
 | 
						|
 | 
						|
		return out
 | 
						|
 | 
						|
	def __repr__(self):
 | 
						|
		return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')
 | 
						|
 | 
						|
 | 
						|
class ConvLayer(nn.Sequential):
 | 
						|
	def __init__(
 | 
						|
			self,
 | 
						|
			in_channel,
 | 
						|
			out_channel,
 | 
						|
			kernel_size,
 | 
						|
			downsample=False,
 | 
						|
			blur_kernel=[1, 3, 3, 1],
 | 
						|
			bias=True,
 | 
						|
			activate=True,
 | 
						|
	):
 | 
						|
		layers = []
 | 
						|
 | 
						|
		if downsample:
 | 
						|
			factor = 2
 | 
						|
			p = (len(blur_kernel) - factor) + (kernel_size - 1)
 | 
						|
			pad0 = (p + 1) // 2
 | 
						|
			pad1 = p // 2
 | 
						|
 | 
						|
			layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
 | 
						|
 | 
						|
			stride = 2
 | 
						|
			self.padding = 0
 | 
						|
 | 
						|
		else:
 | 
						|
			stride = 1
 | 
						|
			self.padding = kernel_size // 2
 | 
						|
 | 
						|
		layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
 | 
						|
								  bias=bias and not activate))
 | 
						|
 | 
						|
		if activate:
 | 
						|
			if bias:
 | 
						|
				layers.append(FusedLeakyReLU(out_channel))
 | 
						|
			else:
 | 
						|
				layers.append(ScaledLeakyReLU(0.2))
 | 
						|
 | 
						|
		super().__init__(*layers)
 | 
						|
 | 
						|
 | 
						|
class ResBlock(nn.Module):
 | 
						|
	def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
 | 
						|
		super().__init__()
 | 
						|
 | 
						|
		self.conv1 = ConvLayer(in_channel, in_channel, 3)
 | 
						|
		self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
 | 
						|
 | 
						|
		self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False)
 | 
						|
 | 
						|
	def forward(self, input):
 | 
						|
		out = self.conv1(input)
 | 
						|
		out = self.conv2(out)
 | 
						|
 | 
						|
		skip = self.skip(input)
 | 
						|
		out = (out + skip) / math.sqrt(2)
 | 
						|
 | 
						|
		return out
 | 
						|
 | 
						|
 | 
						|
class EncoderApp(nn.Module):
 | 
						|
	def __init__(self, size, w_dim=512):
 | 
						|
		super(EncoderApp, self).__init__()
 | 
						|
 | 
						|
		channels = {
 | 
						|
			4: 512,
 | 
						|
			8: 512,
 | 
						|
			16: 512,
 | 
						|
			32: 512,
 | 
						|
			64: 256,
 | 
						|
			128: 128,
 | 
						|
			256: 64,
 | 
						|
			512: 32,
 | 
						|
			1024: 16
 | 
						|
		}
 | 
						|
 | 
						|
		self.w_dim = w_dim
 | 
						|
		log_size = int(math.log(size, 2))
 | 
						|
 | 
						|
		self.convs = nn.ModuleList()
 | 
						|
		self.convs.append(ConvLayer(3, channels[size], 1))
 | 
						|
 | 
						|
		in_channel = channels[size]
 | 
						|
		for i in range(log_size, 2, -1):
 | 
						|
			out_channel = channels[2 ** (i - 1)]
 | 
						|
			self.convs.append(ResBlock(in_channel, out_channel))
 | 
						|
			in_channel = out_channel
 | 
						|
 | 
						|
		self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False))
 | 
						|
 | 
						|
	def forward(self, x):
 | 
						|
 | 
						|
		res = []
 | 
						|
		h = x
 | 
						|
		for conv in self.convs:
 | 
						|
			h = conv(h)
 | 
						|
			res.append(h)
 | 
						|
 | 
						|
		return res[-1].squeeze(-1).squeeze(-1), res[::-1][2:]
 | 
						|
 | 
						|
 | 
						|
class Encoder(nn.Module):
 | 
						|
	def __init__(self, size, dim=512, dim_motion=20):
 | 
						|
		super(Encoder, self).__init__()
 | 
						|
 | 
						|
		# appearance netmork
 | 
						|
		self.net_app = EncoderApp(size, dim)
 | 
						|
 | 
						|
		# motion network
 | 
						|
		fc = [EqualLinear(dim, dim)]
 | 
						|
		for i in range(3):
 | 
						|
			fc.append(EqualLinear(dim, dim))
 | 
						|
 | 
						|
		fc.append(EqualLinear(dim, dim_motion))
 | 
						|
		self.fc = nn.Sequential(*fc)
 | 
						|
 | 
						|
	def enc_app(self, x):
 | 
						|
		h_source = self.net_app(x)
 | 
						|
		return h_source
 | 
						|
 | 
						|
	def enc_motion(self, x):
 | 
						|
		h, _ = self.net_app(x)
 | 
						|
		h_motion = self.fc(h)
 | 
						|
		return h_motion
 | 
						|
 | 
						|
 | 
						|
class Direction(nn.Module):
 | 
						|
    def __init__(self, motion_dim):
 | 
						|
        super(Direction, self).__init__()
 | 
						|
        self.weight = nn.Parameter(torch.randn(512, motion_dim))
 | 
						|
 | 
						|
    def forward(self, input):
 | 
						|
 | 
						|
        weight = self.weight + 1e-8
 | 
						|
        Q, R = custom_qr(weight)
 | 
						|
        if input is None:
 | 
						|
            return Q
 | 
						|
        else:
 | 
						|
            input_diag = torch.diag_embed(input)  # alpha, diagonal matrix
 | 
						|
            out = torch.matmul(input_diag, Q.T)
 | 
						|
            out = torch.sum(out, dim=1)
 | 
						|
            return out
 | 
						|
 | 
						|
 | 
						|
class Synthesis(nn.Module):
 | 
						|
    def __init__(self, motion_dim):
 | 
						|
        super(Synthesis, self).__init__()
 | 
						|
        self.direction = Direction(motion_dim)
 | 
						|
 | 
						|
 | 
						|
class Generator(nn.Module):
 | 
						|
	def __init__(self, size, style_dim=512, motion_dim=20):
 | 
						|
		super().__init__()
 | 
						|
 | 
						|
		self.enc = Encoder(size, style_dim, motion_dim)
 | 
						|
		self.dec = Synthesis(motion_dim)
 | 
						|
 | 
						|
	def get_motion(self, img):
 | 
						|
		#motion_feat = self.enc.enc_motion(img)
 | 
						|
		# motion_feat = torch.utils.checkpoint.checkpoint((self.enc.enc_motion), img, use_reentrant=True)
 | 
						|
		with torch.cuda.amp.autocast(dtype=torch.float32):
 | 
						|
			motion_feat = self.enc.enc_motion(img)
 | 
						|
			motion = self.dec.direction(motion_feat)
 | 
						|
		return motion |