mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			116 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
 | 
						|
class family_handler():
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def set_cache_parameters(cache_type, base_model_type, model_def, inputs, skip_steps_cache):
 | 
						|
        if base_model_type == "sky_df_1.3B":
 | 
						|
            coefficients= [2.39676752e+03, -1.31110545e+03,  2.01331979e+02, -8.29855975e+00, 1.37887774e-01]
 | 
						|
        else: 
 | 
						|
            coefficients= [-5784.54975374,  5449.50911966, -1811.16591783,   256.27178429, -13.02252404]
 | 
						|
 | 
						|
        skip_steps_cache.coefficients = coefficients
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_model_def(base_model_type, model_def):
 | 
						|
        extra_model_def = {}
 | 
						|
        if base_model_type in ["sky_df_14B"]:
 | 
						|
            fps = 24
 | 
						|
        else:
 | 
						|
            fps = 16
 | 
						|
        extra_model_def["fps"] =fps
 | 
						|
        extra_model_def["frames_minimum"] = 17
 | 
						|
        extra_model_def["frames_steps"] = 20
 | 
						|
        extra_model_def["latent_size"] = 4
 | 
						|
        extra_model_def["sliding_window"] = True
 | 
						|
        extra_model_def["skip_layer_guidance"] = True
 | 
						|
        extra_model_def["tea_cache"] = True
 | 
						|
        extra_model_def["guidance_max_phases"] = 1
 | 
						|
 | 
						|
        extra_model_def["model_modes"] = {
 | 
						|
                    "choices": [
 | 
						|
                        ("Synchronous", 0),
 | 
						|
                        ("Asynchronous (better quality but around 50% extra steps added)", 5),
 | 
						|
                        ],
 | 
						|
                    "default": 0,
 | 
						|
                    "label" : "Generation Type"
 | 
						|
        }
 | 
						|
 | 
						|
        extra_model_def["image_prompt_types_allowed"] = "TSV"
 | 
						|
 | 
						|
 | 
						|
        return extra_model_def 
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_supported_types():
 | 
						|
        return ["sky_df_1.3B", "sky_df_14B"]
 | 
						|
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_family_maps():
 | 
						|
        models_eqv_map = {
 | 
						|
            "sky_df_1.3B" : "sky_df_14B",
 | 
						|
        }
 | 
						|
 | 
						|
        models_comp_map = { 
 | 
						|
                    "sky_df_14B": ["sky_df_1.3B"],
 | 
						|
                    }
 | 
						|
        return models_eqv_map, models_comp_map
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_model_family():
 | 
						|
        return "wan"
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_family_infos():
 | 
						|
        return {}
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_rgb_factors(base_model_type ):
 | 
						|
        from shared.RGB_factors import get_rgb_factors
 | 
						|
        latent_rgb_factors, latent_rgb_factors_bias = get_rgb_factors("wan", base_model_type)
 | 
						|
        return latent_rgb_factors, latent_rgb_factors_bias
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def query_model_files(computeList, base_model_type, model_filename, text_encoder_quantization):
 | 
						|
        from .wan_handler import family_handler
 | 
						|
        return family_handler.query_model_files(computeList, base_model_type, model_filename, text_encoder_quantization)
 | 
						|
    
 | 
						|
    @staticmethod
 | 
						|
    def load_model(model_filename, model_type, base_model_type, model_def, quantizeTransformer = False, text_encoder_quantization = None, dtype = torch.bfloat16, VAE_dtype = torch.float32, mixed_precision_transformer = False, save_quantized= False, submodel_no_list = None):
 | 
						|
        from .configs import WAN_CONFIGS
 | 
						|
        from .wan_handler import family_handler
 | 
						|
        cfg = WAN_CONFIGS['t2v-14B']
 | 
						|
        from . import DTT2V
 | 
						|
        wan_model = DTT2V(
 | 
						|
            config=cfg,
 | 
						|
            checkpoint_dir="ckpts",
 | 
						|
            model_filename=model_filename,
 | 
						|
            model_type = model_type,        
 | 
						|
            model_def = model_def,
 | 
						|
            base_model_type=base_model_type,
 | 
						|
            text_encoder_filename= family_handler.get_wan_text_encoder_filename(text_encoder_quantization),
 | 
						|
            quantizeTransformer = quantizeTransformer,
 | 
						|
            dtype = dtype,
 | 
						|
            VAE_dtype = VAE_dtype, 
 | 
						|
            mixed_precision_transformer = mixed_precision_transformer,
 | 
						|
            save_quantized = save_quantized
 | 
						|
        )
 | 
						|
 | 
						|
        pipe = {"transformer": wan_model.model, "text_encoder" : wan_model.text_encoder.model, "vae": wan_model.vae.model }
 | 
						|
        return wan_model, pipe
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def update_default_settings(base_model_type, model_def, ui_defaults):
 | 
						|
        ui_defaults.update({
 | 
						|
            "guidance_scale": 6.0,
 | 
						|
            "flow_shift": 8,
 | 
						|
            "sliding_window_discard_last_frames" : 0,
 | 
						|
            "resolution": "1280x720" if "720" in base_model_type else "960x544",
 | 
						|
            "sliding_window_size" : 121 if "720" in base_model_type else 97,
 | 
						|
            "RIFLEx_setting": 2,
 | 
						|
            "guidance_scale": 6,
 | 
						|
            "flow_shift": 8,
 | 
						|
        }) |