mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
950 lines
31 KiB
Python
950 lines
31 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||
import math
|
||
|
||
import torch
|
||
import torch.cuda.amp as amp
|
||
import torch.nn as nn
|
||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||
from diffusers.models.modeling_utils import ModelMixin
|
||
import numpy as np
|
||
from typing import Union,Optional
|
||
from mmgp import offload
|
||
from .attention import pay_attention
|
||
|
||
__all__ = ['WanModel']
|
||
|
||
|
||
def sinusoidal_embedding_1d(dim, position):
|
||
# preprocess
|
||
assert dim % 2 == 0
|
||
half = dim // 2
|
||
position = position.type(torch.float32)
|
||
|
||
# calculation
|
||
sinusoid = torch.outer(
|
||
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
|
||
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
||
return x
|
||
|
||
|
||
|
||
|
||
def identify_k( b: float, d: int, N: int):
|
||
"""
|
||
This function identifies the index of the intrinsic frequency component in a RoPE-based pre-trained diffusion transformer.
|
||
|
||
Args:
|
||
b (`float`): The base frequency for RoPE.
|
||
d (`int`): Dimension of the frequency tensor
|
||
N (`int`): the first observed repetition frame in latent space
|
||
Returns:
|
||
k (`int`): the index of intrinsic frequency component
|
||
N_k (`int`): the period of intrinsic frequency component in latent space
|
||
Example:
|
||
In HunyuanVideo, b=256 and d=16, the repetition occurs approximately 8s (N=48 in latent space).
|
||
k, N_k = identify_k(b=256, d=16, N=48)
|
||
In this case, the intrinsic frequency index k is 4, and the period N_k is 50.
|
||
"""
|
||
|
||
# Compute the period of each frequency in RoPE according to Eq.(4)
|
||
periods = []
|
||
for j in range(1, d // 2 + 1):
|
||
theta_j = 1.0 / (b ** (2 * (j - 1) / d))
|
||
N_j = round(2 * torch.pi / theta_j)
|
||
periods.append(N_j)
|
||
|
||
# Identify the intrinsic frequency whose period is closed to N(see Eq.(7))
|
||
diffs = [abs(N_j - N) for N_j in periods]
|
||
k = diffs.index(min(diffs)) + 1
|
||
N_k = periods[k-1]
|
||
return k, N_k
|
||
|
||
def rope_params_riflex(max_seq_len, dim, theta=10000, L_test=30, k=6):
|
||
assert dim % 2 == 0
|
||
exponents = torch.arange(0, dim, 2, dtype=torch.float64).div(dim)
|
||
inv_theta_pow = 1.0 / torch.pow(theta, exponents)
|
||
|
||
inv_theta_pow[k-1] = 0.9 * 2 * torch.pi / L_test
|
||
|
||
freqs = torch.outer(torch.arange(max_seq_len), inv_theta_pow)
|
||
if True:
|
||
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
|
||
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
|
||
return (freqs_cos, freqs_sin)
|
||
else:
|
||
freqs = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
||
return freqs
|
||
|
||
|
||
|
||
|
||
def rope_apply_(x, grid_sizes, freqs):
|
||
assert x.shape[0]==1
|
||
|
||
n, c = x.size(2), x.size(3) // 2
|
||
|
||
# split freqs
|
||
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
||
|
||
f, h, w = grid_sizes[0]
|
||
seq_len = f * h * w
|
||
x_i = x[0, :seq_len, :, :]
|
||
|
||
x_i = x_i.to(torch.float32)
|
||
x_i = x_i.reshape(seq_len, n, -1, 2)
|
||
x_i = torch.view_as_complex(x_i)
|
||
freqs_i = torch.cat([
|
||
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
||
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
||
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
||
], dim=-1)
|
||
freqs_i= freqs_i.reshape(seq_len, 1, -1)
|
||
|
||
# apply rotary embedding
|
||
x_i *= freqs_i
|
||
x_i = torch.view_as_real(x_i).flatten(2)
|
||
x[0, :seq_len, :, :] = x_i.to(torch.bfloat16)
|
||
# x_i = torch.cat([x_i, x[0, seq_len:]])
|
||
return x
|
||
|
||
# @amp.autocast(enabled=False)
|
||
def rope_apply(x, grid_sizes, freqs):
|
||
n, c = x.size(2), x.size(3) // 2
|
||
|
||
# split freqs
|
||
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
||
|
||
# loop over samples
|
||
output = []
|
||
for i, (f, h, w) in enumerate(grid_sizes):
|
||
seq_len = f * h * w
|
||
|
||
# precompute multipliers
|
||
# x_i = x[i, :seq_len]
|
||
x_i = x[i]
|
||
x_i = x_i[:seq_len, :, :]
|
||
|
||
x_i = x_i.to(torch.float32)
|
||
x_i = x_i.reshape(seq_len, n, -1, 2)
|
||
x_i = torch.view_as_complex(x_i)
|
||
freqs_i = torch.cat([
|
||
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
||
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
||
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
||
],
|
||
dim=-1).reshape(seq_len, 1, -1)
|
||
|
||
# apply rotary embedding
|
||
x_i *= freqs_i
|
||
x_i = torch.view_as_real(x_i).flatten(2)
|
||
x_i = x_i.to(torch.bfloat16)
|
||
x_i = torch.cat([x_i, x[i, seq_len:]])
|
||
|
||
# append to collection
|
||
output.append(x_i)
|
||
return torch.stack(output) #.float()
|
||
|
||
def relative_l1_distance(last_tensor, current_tensor):
|
||
l1_distance = torch.abs(last_tensor - current_tensor).mean()
|
||
norm = torch.abs(last_tensor).mean()
|
||
relative_l1_distance = l1_distance / norm
|
||
return relative_l1_distance.to(torch.float32)
|
||
|
||
class WanRMSNorm(nn.Module):
|
||
|
||
def __init__(self, dim, eps=1e-5):
|
||
super().__init__()
|
||
self.dim = dim
|
||
self.eps = eps
|
||
self.weight = nn.Parameter(torch.ones(dim))
|
||
|
||
def forward(self, x):
|
||
r"""
|
||
Args:
|
||
x(Tensor): Shape [B, L, C]
|
||
"""
|
||
y = x.float()
|
||
y.pow_(2)
|
||
y = y.mean(dim=-1, keepdim=True)
|
||
y += self.eps
|
||
y.rsqrt_()
|
||
x *= y
|
||
x *= self.weight
|
||
return x
|
||
# return self._norm(x).type_as(x) * self.weight
|
||
|
||
def _norm(self, x):
|
||
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
||
|
||
def my_LayerNorm(norm, x):
|
||
y = x.float()
|
||
y_m = y.mean(dim=-1, keepdim=True)
|
||
y -= y_m
|
||
del y_m
|
||
y.pow_(2)
|
||
y = y.mean(dim=-1, keepdim=True)
|
||
y += norm.eps
|
||
y.rsqrt_()
|
||
x = x * y
|
||
return x
|
||
|
||
|
||
class WanLayerNorm(nn.LayerNorm):
|
||
|
||
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
|
||
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
|
||
|
||
def forward(self, x):
|
||
r"""
|
||
Args:
|
||
x(Tensor): Shape [B, L, C]
|
||
"""
|
||
# return F.layer_norm(
|
||
# input, self.normalized_shape, self.weight, self.bias, self.eps
|
||
# )
|
||
y = super().forward(x)
|
||
x = y.type_as(x)
|
||
return x
|
||
# return super().forward(x).type_as(x)
|
||
|
||
from wan.modules.posemb_layers import apply_rotary_emb
|
||
|
||
class WanSelfAttention(nn.Module):
|
||
|
||
def __init__(self,
|
||
dim,
|
||
num_heads,
|
||
window_size=(-1, -1),
|
||
qk_norm=True,
|
||
eps=1e-6):
|
||
assert dim % num_heads == 0
|
||
super().__init__()
|
||
self.dim = dim
|
||
self.num_heads = num_heads
|
||
self.head_dim = dim // num_heads
|
||
self.window_size = window_size
|
||
self.qk_norm = qk_norm
|
||
self.eps = eps
|
||
|
||
# layers
|
||
self.q = nn.Linear(dim, dim)
|
||
self.k = nn.Linear(dim, dim)
|
||
self.v = nn.Linear(dim, dim)
|
||
self.o = nn.Linear(dim, dim)
|
||
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
||
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
||
|
||
def forward(self, xlist, seq_lens, grid_sizes, freqs):
|
||
r"""
|
||
Args:
|
||
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
||
seq_lens(Tensor): Shape [B]
|
||
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
||
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
||
"""
|
||
x = xlist[0]
|
||
xlist.clear()
|
||
|
||
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
||
|
||
# query, key, value function
|
||
q = self.q(x)
|
||
self.norm_q(q)
|
||
q = q.view(b, s, n, d) # !!!
|
||
k = self.k(x)
|
||
self.norm_k(k)
|
||
k = k.view(b, s, n, d)
|
||
v = self.v(x).view(b, s, n, d)
|
||
del x
|
||
# rope_apply_(q, grid_sizes, freqs)
|
||
# rope_apply_(k, grid_sizes, freqs)
|
||
qklist = [q,k]
|
||
del q,k
|
||
q,k = apply_rotary_emb(qklist, freqs, head_first=False)
|
||
qkv_list = [q,k,v]
|
||
del q,k,v
|
||
x = pay_attention(
|
||
qkv_list,
|
||
# q=q,
|
||
# k=k,
|
||
# v=v,
|
||
# k_lens=seq_lens,
|
||
window_size=self.window_size)
|
||
# output
|
||
x = x.flatten(2)
|
||
x = self.o(x)
|
||
return x
|
||
|
||
|
||
class WanT2VCrossAttention(WanSelfAttention):
|
||
|
||
def forward(self, xlist, context, context_lens):
|
||
r"""
|
||
Args:
|
||
x(Tensor): Shape [B, L1, C]
|
||
context(Tensor): Shape [B, L2, C]
|
||
context_lens(Tensor): Shape [B]
|
||
"""
|
||
x = xlist[0]
|
||
xlist.clear()
|
||
b, n, d = x.size(0), self.num_heads, self.head_dim
|
||
|
||
# compute query, key, value
|
||
q = self.q(x)
|
||
del x
|
||
self.norm_q(q)
|
||
q= q.view(b, -1, n, d)
|
||
k = self.k(context)
|
||
self.norm_k(k)
|
||
k = k.view(b, -1, n, d)
|
||
v = self.v(context).view(b, -1, n, d)
|
||
|
||
# compute attention
|
||
qvl_list=[q, k, v]
|
||
del q, k, v
|
||
x = pay_attention(qvl_list, k_lens=context_lens, cross_attn= True)
|
||
|
||
# output
|
||
x = x.flatten(2)
|
||
x = self.o(x)
|
||
return x
|
||
|
||
|
||
class WanI2VCrossAttention(WanSelfAttention):
|
||
|
||
def __init__(self,
|
||
dim,
|
||
num_heads,
|
||
window_size=(-1, -1),
|
||
qk_norm=True,
|
||
eps=1e-6):
|
||
super().__init__(dim, num_heads, window_size, qk_norm, eps)
|
||
|
||
self.k_img = nn.Linear(dim, dim)
|
||
self.v_img = nn.Linear(dim, dim)
|
||
# self.alpha = nn.Parameter(torch.zeros((1, )))
|
||
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
||
|
||
def forward(self, xlist, context, context_lens):
|
||
r"""
|
||
Args:
|
||
x(Tensor): Shape [B, L1, C]
|
||
context(Tensor): Shape [B, L2, C]
|
||
context_lens(Tensor): Shape [B]
|
||
"""
|
||
|
||
##### Enjoy this spagheti VRAM optimizations done by DeepBeepMeep !
|
||
# I am sure you are a nice person and as you copy this code, you will give me officially proper credits:
|
||
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter
|
||
|
||
x = xlist[0]
|
||
xlist.clear()
|
||
|
||
context_img = context[:, :257]
|
||
context = context[:, 257:]
|
||
b, n, d = x.size(0), self.num_heads, self.head_dim
|
||
|
||
# compute query, key, value
|
||
q = self.q(x)
|
||
del x
|
||
self.norm_q(q)
|
||
q= q.view(b, -1, n, d)
|
||
k = self.k(context)
|
||
self.norm_k(k)
|
||
k = k.view(b, -1, n, d)
|
||
v = self.v(context).view(b, -1, n, d)
|
||
|
||
qkv_list = [q, k, v]
|
||
del k,v
|
||
x = pay_attention(qkv_list, k_lens=context_lens)
|
||
|
||
k_img = self.k_img(context_img)
|
||
self.norm_k_img(k_img)
|
||
k_img = k_img.view(b, -1, n, d)
|
||
v_img = self.v_img(context_img).view(b, -1, n, d)
|
||
qkv_list = [q, k_img, v_img]
|
||
del q, k_img, v_img
|
||
img_x = pay_attention(qkv_list, k_lens=None)
|
||
# compute attention
|
||
|
||
|
||
# output
|
||
x = x.flatten(2)
|
||
img_x = img_x.flatten(2)
|
||
x += img_x
|
||
del img_x
|
||
x = self.o(x)
|
||
return x
|
||
|
||
|
||
WAN_CROSSATTENTION_CLASSES = {
|
||
't2v_cross_attn': WanT2VCrossAttention,
|
||
'i2v_cross_attn': WanI2VCrossAttention,
|
||
}
|
||
|
||
|
||
class WanAttentionBlock(nn.Module):
|
||
|
||
def __init__(self,
|
||
cross_attn_type,
|
||
dim,
|
||
ffn_dim,
|
||
num_heads,
|
||
window_size=(-1, -1),
|
||
qk_norm=True,
|
||
cross_attn_norm=False,
|
||
eps=1e-6):
|
||
super().__init__()
|
||
self.dim = dim
|
||
self.ffn_dim = ffn_dim
|
||
self.num_heads = num_heads
|
||
self.window_size = window_size
|
||
self.qk_norm = qk_norm
|
||
self.cross_attn_norm = cross_attn_norm
|
||
self.eps = eps
|
||
|
||
# layers
|
||
self.norm1 = WanLayerNorm(dim, eps)
|
||
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
|
||
eps)
|
||
self.norm3 = WanLayerNorm(
|
||
dim, eps,
|
||
elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
||
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
|
||
num_heads,
|
||
(-1, -1),
|
||
qk_norm,
|
||
eps)
|
||
self.norm2 = WanLayerNorm(dim, eps)
|
||
self.ffn = nn.Sequential(
|
||
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
|
||
nn.Linear(ffn_dim, dim))
|
||
|
||
# modulation
|
||
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
||
|
||
def forward(
|
||
self,
|
||
x,
|
||
e,
|
||
seq_lens,
|
||
grid_sizes,
|
||
freqs,
|
||
context,
|
||
context_lens,
|
||
):
|
||
r"""
|
||
Args:
|
||
x(Tensor): Shape [B, L, C]
|
||
e(Tensor): Shape [B, 6, C]
|
||
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
||
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
||
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
||
"""
|
||
e = (self.modulation + e).chunk(6, dim=1)
|
||
|
||
# self-attention
|
||
x_mod = self.norm1(x)
|
||
x_mod *= 1 + e[1]
|
||
x_mod += e[0]
|
||
xlist = [x_mod]
|
||
del x_mod
|
||
y = self.self_attn( xlist, seq_lens, grid_sizes,freqs)
|
||
x.addcmul_(y, e[2])
|
||
del y
|
||
y = self.norm3(x)
|
||
ylist= [y]
|
||
del y
|
||
x += self.cross_attn(ylist, context, context_lens)
|
||
y = self.norm2(x)
|
||
|
||
y *= 1 + e[4]
|
||
y += e[3]
|
||
|
||
|
||
ffn = self.ffn[0]
|
||
gelu = self.ffn[1]
|
||
ffn2= self.ffn[2]
|
||
|
||
y_shape = y.shape
|
||
y = y.view(-1, y_shape[-1])
|
||
chunk_size = int(y_shape[1]/2.7)
|
||
chunks =torch.split(y, chunk_size)
|
||
for y_chunk in chunks:
|
||
mlp_chunk = ffn(y_chunk)
|
||
mlp_chunk = gelu(mlp_chunk)
|
||
y_chunk[...] = ffn2(mlp_chunk)
|
||
del mlp_chunk
|
||
y = y.view(y_shape)
|
||
|
||
x.addcmul_(y, e[5])
|
||
|
||
|
||
|
||
return x
|
||
|
||
|
||
class Head(nn.Module):
|
||
|
||
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
|
||
super().__init__()
|
||
self.dim = dim
|
||
self.out_dim = out_dim
|
||
self.patch_size = patch_size
|
||
self.eps = eps
|
||
|
||
# layers
|
||
out_dim = math.prod(patch_size) * out_dim
|
||
self.norm = WanLayerNorm(dim, eps)
|
||
self.head = nn.Linear(dim, out_dim)
|
||
|
||
# modulation
|
||
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
||
|
||
def forward(self, x, e):
|
||
r"""
|
||
Args:
|
||
x(Tensor): Shape [B, L1, C]
|
||
e(Tensor): Shape [B, C]
|
||
"""
|
||
# assert e.dtype == torch.float32
|
||
|
||
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
|
||
x = self.norm(x).to(torch.bfloat16)
|
||
x *= (1 + e[1])
|
||
x += e[0]
|
||
x = self.head(x)
|
||
return x
|
||
|
||
|
||
class MLPProj(torch.nn.Module):
|
||
|
||
def __init__(self, in_dim, out_dim):
|
||
super().__init__()
|
||
|
||
self.proj = torch.nn.Sequential(
|
||
torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim),
|
||
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
|
||
torch.nn.LayerNorm(out_dim))
|
||
|
||
def forward(self, image_embeds):
|
||
clip_extra_context_tokens = self.proj(image_embeds)
|
||
return clip_extra_context_tokens
|
||
|
||
|
||
class WanModel(ModelMixin, ConfigMixin):
|
||
r"""
|
||
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
||
"""
|
||
|
||
ignore_for_config = [
|
||
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
|
||
]
|
||
_no_split_modules = ['WanAttentionBlock']
|
||
|
||
@register_to_config
|
||
def __init__(self,
|
||
model_type='t2v',
|
||
patch_size=(1, 2, 2),
|
||
text_len=512,
|
||
in_dim=16,
|
||
dim=2048,
|
||
ffn_dim=8192,
|
||
freq_dim=256,
|
||
text_dim=4096,
|
||
out_dim=16,
|
||
num_heads=16,
|
||
num_layers=32,
|
||
window_size=(-1, -1),
|
||
qk_norm=True,
|
||
cross_attn_norm=True,
|
||
eps=1e-6,
|
||
):
|
||
r"""
|
||
Initialize the diffusion model backbone.
|
||
|
||
Args:
|
||
model_type (`str`, *optional*, defaults to 't2v'):
|
||
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
||
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
||
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
||
text_len (`int`, *optional*, defaults to 512):
|
||
Fixed length for text embeddings
|
||
in_dim (`int`, *optional*, defaults to 16):
|
||
Input video channels (C_in)
|
||
dim (`int`, *optional*, defaults to 2048):
|
||
Hidden dimension of the transformer
|
||
ffn_dim (`int`, *optional*, defaults to 8192):
|
||
Intermediate dimension in feed-forward network
|
||
freq_dim (`int`, *optional*, defaults to 256):
|
||
Dimension for sinusoidal time embeddings
|
||
text_dim (`int`, *optional*, defaults to 4096):
|
||
Input dimension for text embeddings
|
||
out_dim (`int`, *optional*, defaults to 16):
|
||
Output video channels (C_out)
|
||
num_heads (`int`, *optional*, defaults to 16):
|
||
Number of attention heads
|
||
num_layers (`int`, *optional*, defaults to 32):
|
||
Number of transformer blocks
|
||
window_size (`tuple`, *optional*, defaults to (-1, -1)):
|
||
Window size for local attention (-1 indicates global attention)
|
||
qk_norm (`bool`, *optional*, defaults to True):
|
||
Enable query/key normalization
|
||
cross_attn_norm (`bool`, *optional*, defaults to False):
|
||
Enable cross-attention normalization
|
||
eps (`float`, *optional*, defaults to 1e-6):
|
||
Epsilon value for normalization layers
|
||
"""
|
||
|
||
super().__init__()
|
||
|
||
assert model_type in ['t2v', 'i2v']
|
||
self.model_type = model_type
|
||
|
||
self.patch_size = patch_size
|
||
self.text_len = text_len
|
||
self.in_dim = in_dim
|
||
self.dim = dim
|
||
self.ffn_dim = ffn_dim
|
||
self.freq_dim = freq_dim
|
||
self.text_dim = text_dim
|
||
self.out_dim = out_dim
|
||
self.num_heads = num_heads
|
||
self.num_layers = num_layers
|
||
self.window_size = window_size
|
||
self.qk_norm = qk_norm
|
||
self.cross_attn_norm = cross_attn_norm
|
||
self.eps = eps
|
||
|
||
# embeddings
|
||
self.patch_embedding = nn.Conv3d(
|
||
in_dim, dim, kernel_size=patch_size, stride=patch_size)
|
||
self.text_embedding = nn.Sequential(
|
||
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
|
||
nn.Linear(dim, dim))
|
||
|
||
self.time_embedding = nn.Sequential(
|
||
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
||
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
|
||
|
||
# blocks
|
||
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
|
||
self.blocks = nn.ModuleList([
|
||
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
|
||
window_size, qk_norm, cross_attn_norm, eps)
|
||
for _ in range(num_layers)
|
||
])
|
||
|
||
# head
|
||
self.head = Head(dim, out_dim, patch_size, eps)
|
||
|
||
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
||
|
||
if model_type == 'i2v':
|
||
self.img_emb = MLPProj(1280, dim)
|
||
|
||
# initialize weights
|
||
self.init_weights()
|
||
|
||
|
||
# self.freqs = torch.cat([
|
||
# rope_params(1024, d - 4 * (d // 6)), #44
|
||
# rope_params(1024, 2 * (d // 6)), #42
|
||
# rope_params(1024, 2 * (d // 6)) #42
|
||
# ],dim=1)
|
||
|
||
|
||
def get_rope_freqs(self, nb_latent_frames, RIFLEx_k = None, device = "cuda"):
|
||
dim = self.dim
|
||
num_heads = self.num_heads
|
||
d = dim // num_heads
|
||
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
||
|
||
|
||
c1, s1 = rope_params_riflex(1024, dim= d - 4 * (d // 6), L_test=nb_latent_frames, k = RIFLEx_k ) if RIFLEx_k != None else rope_params(1024, dim= d - 4 * (d // 6)) #44
|
||
c2, s2 = rope_params(1024, 2 * (d // 6)) #42
|
||
c3, s3 = rope_params(1024, 2 * (d // 6)) #42
|
||
|
||
return (torch.cat([c1,c2,c3],dim=1).to(device) , torch.cat([s1,s2,s3],dim=1).to(device))
|
||
|
||
def compute_teacache_threshold(self, start_step, timesteps = None, speed_factor =0):
|
||
rescale_func = np.poly1d(self.coefficients)
|
||
e_list = []
|
||
for t in timesteps:
|
||
t = torch.stack([t])
|
||
e_list.append(self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t)))
|
||
|
||
best_threshold = 0.01
|
||
best_diff = 1000
|
||
target_nb_steps= int(len(timesteps) / speed_factor)
|
||
threshold = 0.01
|
||
while threshold <= 0.6:
|
||
accumulated_rel_l1_distance =0
|
||
nb_steps = 0
|
||
diff = 1000
|
||
for i, t in enumerate(timesteps):
|
||
skip = False
|
||
if not (i<=start_step or i== len(timesteps)):
|
||
accumulated_rel_l1_distance += rescale_func(((e_list[i]-previous_modulated_input).abs().mean() / previous_modulated_input.abs().mean()).cpu().item())
|
||
if accumulated_rel_l1_distance < threshold:
|
||
skip = True
|
||
else:
|
||
accumulated_rel_l1_distance = 0
|
||
previous_modulated_input = e_list[i]
|
||
if not skip:
|
||
nb_steps += 1
|
||
diff = abs(target_nb_steps - nb_steps)
|
||
if diff < best_diff:
|
||
best_threshold = threshold
|
||
best_diff = diff
|
||
elif diff > best_diff:
|
||
break
|
||
threshold += 0.01
|
||
self.rel_l1_thresh = best_threshold
|
||
print(f"Tea Cache, best threshold found:{best_threshold} with gain x{len(timesteps)/(len(timesteps) - best_diff):0.1f} for a target of x{speed_factor}")
|
||
return best_threshold
|
||
|
||
def forward(
|
||
self,
|
||
x,
|
||
t,
|
||
context,
|
||
seq_len,
|
||
clip_fea=None,
|
||
y=None,
|
||
freqs = None,
|
||
pipeline = None,
|
||
current_step = 0,
|
||
context2 = None,
|
||
is_uncond=False,
|
||
max_steps = 0,
|
||
slg_layers=None,
|
||
):
|
||
r"""
|
||
Forward pass through the diffusion model
|
||
|
||
Args:
|
||
x (List[Tensor]):
|
||
List of input video tensors, each with shape [C_in, F, H, W]
|
||
t (Tensor):
|
||
Diffusion timesteps tensor of shape [B]
|
||
context (List[Tensor]):
|
||
List of text embeddings each with shape [L, C]
|
||
seq_len (`int`):
|
||
Maximum sequence length for positional encoding
|
||
clip_fea (Tensor, *optional*):
|
||
CLIP image features for image-to-video mode
|
||
y (List[Tensor], *optional*):
|
||
Conditional video inputs for image-to-video mode, same shape as x
|
||
|
||
Returns:
|
||
List[Tensor]:
|
||
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
||
"""
|
||
if self.model_type == 'i2v':
|
||
assert clip_fea is not None and y is not None
|
||
# params
|
||
device = self.patch_embedding.weight.device
|
||
if torch.is_tensor(freqs) and freqs.device != device:
|
||
freqs = freqs.to(device)
|
||
|
||
if y is not None:
|
||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||
|
||
# embeddings
|
||
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
||
# grid_sizes = torch.stack(
|
||
# [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
||
|
||
grid_sizes = [ list(u.shape[2:]) for u in x]
|
||
embed_sizes = grid_sizes[0]
|
||
|
||
offload.shared_state["embed_sizes"] = embed_sizes
|
||
offload.shared_state["step_no"] = current_step
|
||
offload.shared_state["max_steps"] = max_steps
|
||
|
||
|
||
x = [u.flatten(2).transpose(1, 2) for u in x]
|
||
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
||
assert seq_lens.max() <= seq_len
|
||
if len(x)==1 and seq_len == x[0].size(1):
|
||
x = x[0]
|
||
else:
|
||
x = torch.cat([
|
||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
||
dim=1) for u in x
|
||
])
|
||
|
||
# time embeddings
|
||
e = self.time_embedding(
|
||
sinusoidal_embedding_1d(self.freq_dim, t))
|
||
e0 = self.time_projection(e).unflatten(1, (6, self.dim)).to(torch.bfloat16)
|
||
|
||
# context
|
||
context_lens = None
|
||
context = self.text_embedding(
|
||
torch.stack([
|
||
torch.cat(
|
||
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
||
for u in context
|
||
]))
|
||
if context2!=None:
|
||
context2 = self.text_embedding(
|
||
torch.stack([
|
||
torch.cat(
|
||
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
||
for u in context2
|
||
]))
|
||
|
||
if clip_fea is not None:
|
||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||
context = torch.concat([context_clip, context], dim=1)
|
||
if context2 != None:
|
||
context2 = torch.concat([context_clip, context2], dim=1)
|
||
|
||
joint_pass = context2 != None
|
||
if joint_pass:
|
||
x_list = [x, x.clone()]
|
||
context_list = [context, context2]
|
||
is_uncond = False
|
||
else:
|
||
x_list = [x]
|
||
context_list = [context]
|
||
del x
|
||
should_calc = True
|
||
if self.enable_teacache:
|
||
if is_uncond:
|
||
should_calc = self.should_calc
|
||
else:
|
||
if current_step <= self.teacache_start_step or current_step == self.num_steps-1:
|
||
should_calc = True
|
||
self.accumulated_rel_l1_distance = 0
|
||
else:
|
||
rescale_func = np.poly1d(self.coefficients)
|
||
self.accumulated_rel_l1_distance += rescale_func(((e-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
|
||
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
||
should_calc = False
|
||
self.teacache_skipped_steps += 1
|
||
# print(f"Teacache Skipped Step:{self.teacache_skipped_steps}/{current_step}" )
|
||
else:
|
||
should_calc = True
|
||
self.accumulated_rel_l1_distance = 0
|
||
self.previous_modulated_input = e
|
||
self.should_calc = should_calc
|
||
|
||
if not should_calc:
|
||
for i, x in enumerate(x_list):
|
||
x += self.previous_residual_uncond if i==1 or is_uncond else self.previous_residual_cond
|
||
else:
|
||
if self.enable_teacache:
|
||
if joint_pass or is_uncond:
|
||
self.previous_residual_uncond = None
|
||
if joint_pass or not is_uncond:
|
||
self.previous_residual_cond = None
|
||
ori_hidden_states = x_list[0].clone()
|
||
# arguments
|
||
kwargs = dict(
|
||
# e=e0,
|
||
seq_lens=seq_lens,
|
||
grid_sizes=grid_sizes,
|
||
freqs=freqs,
|
||
# context=context,
|
||
context_lens=context_lens)
|
||
|
||
for block_idx, block in enumerate(self.blocks):
|
||
offload.shared_state["layer"] = block_idx
|
||
if "refresh" in offload.shared_state:
|
||
del offload.shared_state["refresh"]
|
||
offload.shared_state["callback"](-1, -1, True)
|
||
if pipeline._interrupt:
|
||
if joint_pass:
|
||
return None, None
|
||
else:
|
||
return [None]
|
||
|
||
if slg_layers is not None and block_idx in slg_layers:
|
||
if is_uncond and not joint_pass:
|
||
continue
|
||
x_list[0] = block(x_list[0], context = context_list[0], e= e0, **kwargs)
|
||
|
||
else:
|
||
for i, (x, context) in enumerate(zip(x_list, context_list)):
|
||
x_list[i] = block(x, context = context, e= e0, **kwargs)
|
||
del x
|
||
|
||
if self.enable_teacache:
|
||
if joint_pass:
|
||
self.previous_residual_cond = torch.sub(x_list[0], ori_hidden_states)
|
||
self.previous_residual_uncond = ori_hidden_states
|
||
torch.sub(x_list[1], ori_hidden_states, out=self.previous_residual_uncond)
|
||
else:
|
||
residual = ori_hidden_states # just to have a readable code
|
||
torch.sub(x_list[0], ori_hidden_states, out=residual)
|
||
if i==1 or is_uncond:
|
||
self.previous_residual_uncond = residual
|
||
else:
|
||
self.previous_residual_cond = residual
|
||
residual, ori_hidden_states = None, None
|
||
|
||
for i, x in enumerate(x_list):
|
||
# head
|
||
x = self.head(x, e)
|
||
|
||
# unpatchify
|
||
x_list[i] = self.unpatchify(x, grid_sizes)
|
||
del x
|
||
|
||
if joint_pass:
|
||
return x_list[0][0], x_list[1][0]
|
||
else:
|
||
return [u.float() for u in x_list[0]]
|
||
|
||
def unpatchify(self, x, grid_sizes):
|
||
r"""
|
||
Reconstruct video tensors from patch embeddings.
|
||
|
||
Args:
|
||
x (List[Tensor]):
|
||
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
||
grid_sizes (Tensor):
|
||
Original spatial-temporal grid dimensions before patching,
|
||
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
||
|
||
Returns:
|
||
List[Tensor]:
|
||
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
|
||
"""
|
||
|
||
c = self.out_dim
|
||
out = []
|
||
for u, v in zip(x, grid_sizes):
|
||
u = u[:math.prod(v)].view(*v, *self.patch_size, c)
|
||
u = torch.einsum('fhwpqrc->cfphqwr', u)
|
||
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
|
||
out.append(u)
|
||
return out
|
||
|
||
def init_weights(self):
|
||
r"""
|
||
Initialize model parameters using Xavier initialization.
|
||
"""
|
||
|
||
# basic init
|
||
for m in self.modules():
|
||
if isinstance(m, nn.Linear):
|
||
nn.init.xavier_uniform_(m.weight)
|
||
if m.bias is not None:
|
||
nn.init.zeros_(m.bias)
|
||
|
||
# init embeddings
|
||
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
|
||
for m in self.text_embedding.modules():
|
||
if isinstance(m, nn.Linear):
|
||
nn.init.normal_(m.weight, std=.02)
|
||
for m in self.time_embedding.modules():
|
||
if isinstance(m, nn.Linear):
|
||
nn.init.normal_(m.weight, std=.02)
|
||
|
||
# init output layer
|
||
nn.init.zeros_(self.head.head.weight)
|