mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			439 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			439 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
import gc
 | 
						|
import logging
 | 
						|
import math
 | 
						|
import os
 | 
						|
import random
 | 
						|
import sys
 | 
						|
import types
 | 
						|
from contextlib import contextmanager
 | 
						|
from functools import partial
 | 
						|
import json
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
import torch.cuda.amp as amp
 | 
						|
import torch.distributed as dist
 | 
						|
import torchvision.transforms.functional as TF
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
from .distributed.fsdp import shard_model
 | 
						|
from .modules.clip import CLIPModel
 | 
						|
from .modules.model import WanModel
 | 
						|
from .modules.t5 import T5EncoderModel
 | 
						|
from .modules.vae import WanVAE
 | 
						|
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
						|
                               get_sampling_sigmas, retrieve_timesteps)
 | 
						|
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
						|
from wan.modules.posemb_layers import get_rotary_pos_embed
 | 
						|
from wan.utils.utils import resize_lanczos, calculate_new_dimensions
 | 
						|
from wan.utils.basic_flowmatch import FlowMatchScheduler
 | 
						|
 | 
						|
def optimized_scale(positive_flat, negative_flat):
 | 
						|
 | 
						|
    # Calculate dot production
 | 
						|
    dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
 | 
						|
 | 
						|
    # Squared norm of uncondition
 | 
						|
    squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
 | 
						|
 | 
						|
    # st_star = v_cond^T * v_uncond / ||v_uncond||^2
 | 
						|
    st_star = dot_product / squared_norm
 | 
						|
    
 | 
						|
    return st_star
 | 
						|
 | 
						|
 | 
						|
 | 
						|
class WanI2V:
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        config,
 | 
						|
        checkpoint_dir,
 | 
						|
        model_filename = None,
 | 
						|
        model_type = None, 
 | 
						|
        base_model_type= None,
 | 
						|
        text_encoder_filename= None,
 | 
						|
        quantizeTransformer = False,
 | 
						|
        dtype = torch.bfloat16,
 | 
						|
        VAE_dtype = torch.float32,
 | 
						|
        save_quantized = False,
 | 
						|
        mixed_precision_transformer = False
 | 
						|
    ):
 | 
						|
        self.device = torch.device(f"cuda")
 | 
						|
        self.config = config
 | 
						|
        self.dtype = dtype
 | 
						|
        self.VAE_dtype = VAE_dtype
 | 
						|
        self.num_train_timesteps = config.num_train_timesteps
 | 
						|
        self.param_dtype = config.param_dtype
 | 
						|
        # shard_fn = partial(shard_model, device_id=device_id)
 | 
						|
        self.text_encoder = T5EncoderModel(
 | 
						|
            text_len=config.text_len,
 | 
						|
            dtype=config.t5_dtype,
 | 
						|
            device=torch.device('cpu'),
 | 
						|
            checkpoint_path=text_encoder_filename,
 | 
						|
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
						|
            shard_fn=None,
 | 
						|
        )
 | 
						|
 | 
						|
        self.vae_stride = config.vae_stride
 | 
						|
        self.patch_size = config.patch_size
 | 
						|
        self.vae = WanVAE(
 | 
						|
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype = VAE_dtype,
 | 
						|
            device=self.device)
 | 
						|
 | 
						|
        self.clip = CLIPModel(
 | 
						|
            dtype=config.clip_dtype,
 | 
						|
            device=self.device,
 | 
						|
            checkpoint_path=os.path.join(checkpoint_dir , 
 | 
						|
                                         config.clip_checkpoint),
 | 
						|
            tokenizer_path=os.path.join(checkpoint_dir ,  config.clip_tokenizer))
 | 
						|
 | 
						|
        logging.info(f"Creating WanModel from {model_filename[-1]}")
 | 
						|
        from mmgp import offload
 | 
						|
 | 
						|
        # fantasy = torch.load("c:/temp/fantasy.ckpt")
 | 
						|
        # proj_model = fantasy["proj_model"]
 | 
						|
        # audio_processor = fantasy["audio_processor"]
 | 
						|
        # offload.safetensors2.torch_write_file(proj_model, "proj_model.safetensors")
 | 
						|
        # offload.safetensors2.torch_write_file(audio_processor, "audio_processor.safetensors")
 | 
						|
        # for k,v in audio_processor.items():
 | 
						|
        #     audio_processor[k] = v.to(torch.bfloat16)
 | 
						|
        # with open("fantasy_config.json", "r", encoding="utf-8") as reader:
 | 
						|
        #     config_text = reader.read()
 | 
						|
        # config_json = json.loads(config_text)
 | 
						|
        # offload.safetensors2.torch_write_file(audio_processor, "audio_processor_bf16.safetensors", config=config_json)
 | 
						|
        # model_filename = [model_filename, "audio_processor_bf16.safetensors"] 
 | 
						|
        # model_filename = "c:/temp/i2v480p/diffusion_pytorch_model-00001-of-00007.safetensors"
 | 
						|
        # dtype = torch.float16
 | 
						|
        base_config_file = f"configs/{base_model_type}.json"
 | 
						|
        forcedConfigPath = base_config_file if len(model_filename) > 1 else None
 | 
						|
        self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath= base_config_file, forcedConfigPath= forcedConfigPath)
 | 
						|
        self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
 | 
						|
        offload.change_dtype(self.model, dtype, True)
 | 
						|
        # offload.save_model(self.model, "wan2.1_image2video_720p_14B_mbf16.safetensors", config_file_path="c:/temp/i2v720p/config.json")
 | 
						|
        # offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mbf16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json")
 | 
						|
        # offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mfp16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json")
 | 
						|
 | 
						|
        # offload.save_model(self.model, "wan2.1_Fun_InP_1.3B_bf16_bis.safetensors")
 | 
						|
        self.model.eval().requires_grad_(False)
 | 
						|
        if save_quantized:            
 | 
						|
            from wgp import save_quantized_model
 | 
						|
            save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file)
 | 
						|
 | 
						|
 | 
						|
        self.sample_neg_prompt = config.sample_neg_prompt
 | 
						|
 | 
						|
    def generate(self,
 | 
						|
        input_prompt,
 | 
						|
        image_start,
 | 
						|
        image_end = None,
 | 
						|
        height =720,
 | 
						|
        width = 1280,
 | 
						|
        fit_into_canvas = True,
 | 
						|
        frame_num=81,
 | 
						|
        shift=5.0,
 | 
						|
        sample_solver='unipc',
 | 
						|
        sampling_steps=40,
 | 
						|
        guide_scale=5.0,
 | 
						|
        n_prompt="",
 | 
						|
        seed=-1,
 | 
						|
        callback = None,
 | 
						|
        enable_RIFLEx = False,
 | 
						|
        VAE_tile_size= 0,
 | 
						|
        joint_pass = False,
 | 
						|
        slg_layers = None,
 | 
						|
        slg_start = 0.0,
 | 
						|
        slg_end = 1.0,
 | 
						|
        cfg_star_switch = True,
 | 
						|
        cfg_zero_step = 5,
 | 
						|
        audio_scale=None,
 | 
						|
        audio_cfg_scale=None,
 | 
						|
        audio_proj=None,
 | 
						|
        audio_context_lens=None,
 | 
						|
        model_filename = None,
 | 
						|
        **bbargs
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        Generates video frames from input image and text prompt using diffusion process.
 | 
						|
 | 
						|
        Args:
 | 
						|
            input_prompt (`str`):
 | 
						|
                Text prompt for content generation.
 | 
						|
            image_start (PIL.Image.Image):
 | 
						|
                Input image tensor. Shape: [3, H, W]
 | 
						|
            max_area (`int`, *optional*, defaults to 720*1280):
 | 
						|
                Maximum pixel area for latent space calculation. Controls video resolution scaling
 | 
						|
            frame_num (`int`, *optional*, defaults to 81):
 | 
						|
                How many frames to sample from a video. The number should be 4n+1
 | 
						|
            shift (`float`, *optional*, defaults to 5.0):
 | 
						|
                Noise schedule shift parameter. Affects temporal dynamics
 | 
						|
                [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
 | 
						|
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
						|
                Solver used to sample the video.
 | 
						|
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
						|
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
						|
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
						|
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
						|
            n_prompt (`str`, *optional*, defaults to ""):
 | 
						|
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
						|
            seed (`int`, *optional*, defaults to -1):
 | 
						|
                Random seed for noise generation. If -1, use random seed
 | 
						|
            offload_model (`bool`, *optional*, defaults to True):
 | 
						|
                If True, offloads models to CPU during generation to save VRAM
 | 
						|
 | 
						|
        Returns:
 | 
						|
            torch.Tensor:
 | 
						|
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
						|
                - C: Color channels (3 for RGB)
 | 
						|
                - N: Number of frames (81)
 | 
						|
                - H: Frame height (from max_area)
 | 
						|
                - W: Frame width from max_area)
 | 
						|
        """
 | 
						|
 | 
						|
        add_frames_for_end_image = "image2video" in model_filename or "fantasy" in model_filename
 | 
						|
 | 
						|
        image_start = TF.to_tensor(image_start)
 | 
						|
        lat_frames = int((frame_num - 1) // self.vae_stride[0] + 1)
 | 
						|
        any_end_frame = image_end !=None 
 | 
						|
        if any_end_frame:
 | 
						|
            any_end_frame = True
 | 
						|
            image_end = TF.to_tensor(image_end) 
 | 
						|
            if add_frames_for_end_image:
 | 
						|
                frame_num +=1
 | 
						|
                lat_frames = int((frame_num - 2) // self.vae_stride[0] + 2)
 | 
						|
        
 | 
						|
        h, w = image_start.shape[1:]
 | 
						|
 | 
						|
        h, w = calculate_new_dimensions(height, width, h, w, fit_into_canvas)
 | 
						|
 
 | 
						|
        lat_h = round(
 | 
						|
            h // self.vae_stride[1] //
 | 
						|
            self.patch_size[1] * self.patch_size[1])
 | 
						|
        lat_w = round(
 | 
						|
            w // self.vae_stride[2] //
 | 
						|
            self.patch_size[2] * self.patch_size[2])
 | 
						|
        h = lat_h * self.vae_stride[1]
 | 
						|
        w = lat_w * self.vae_stride[2]
 | 
						|
        
 | 
						|
        clip_image_size = self.clip.model.image_size
 | 
						|
        img_interpolated = resize_lanczos(image_start, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device) #, self.dtype
 | 
						|
        image_start = resize_lanczos(image_start, clip_image_size, clip_image_size)
 | 
						|
        image_start = image_start.sub_(0.5).div_(0.5).to(self.device) #, self.dtype
 | 
						|
        if image_end!= None:
 | 
						|
            img_interpolated2 = resize_lanczos(image_end, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device) #, self.dtype
 | 
						|
            image_end = resize_lanczos(image_end, clip_image_size, clip_image_size)
 | 
						|
            image_end = image_end.sub_(0.5).div_(0.5).to(self.device) #, self.dtype
 | 
						|
 | 
						|
        max_seq_len = lat_frames * lat_h * lat_w // ( self.patch_size[1] * self.patch_size[2])
 | 
						|
 | 
						|
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
						|
        seed_g = torch.Generator(device=self.device)
 | 
						|
        seed_g.manual_seed(seed)
 | 
						|
        noise = torch.randn(16, lat_frames, lat_h, lat_w, dtype=torch.float32, generator=seed_g, device=self.device)        
 | 
						|
 | 
						|
        msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device)
 | 
						|
        if any_end_frame:
 | 
						|
            msk[:, 1: -1] = 0
 | 
						|
            if add_frames_for_end_image:
 | 
						|
                msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:-1], torch.repeat_interleave(msk[:, -1:], repeats=4, dim=1) ], dim=1)
 | 
						|
            else:
 | 
						|
                msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1)
 | 
						|
 | 
						|
        else:
 | 
						|
            msk[:, 1:] = 0
 | 
						|
            msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1)
 | 
						|
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
 | 
						|
        msk = msk.transpose(1, 2)[0]
 | 
						|
 | 
						|
        if n_prompt == "":
 | 
						|
            n_prompt = self.sample_neg_prompt
 | 
						|
 | 
						|
        if self._interrupt:
 | 
						|
            return None
 | 
						|
 | 
						|
        # preprocess
 | 
						|
        context = self.text_encoder([input_prompt], self.device)[0]
 | 
						|
        context_null = self.text_encoder([n_prompt], self.device)[0]
 | 
						|
        context  = context.to(self.dtype)
 | 
						|
        context_null  = context_null.to(self.dtype)
 | 
						|
 | 
						|
        if self._interrupt:
 | 
						|
            return None
 | 
						|
 | 
						|
        clip_context = self.clip.visual([image_start[:, None, :, :]])
 | 
						|
 | 
						|
        from mmgp import offload
 | 
						|
        offload.last_offload_obj.unload_all()
 | 
						|
        if any_end_frame:
 | 
						|
            mean2 = 0
 | 
						|
            enc= torch.concat([
 | 
						|
                    img_interpolated,
 | 
						|
                    torch.full( (3, frame_num-2,  h, w), mean2, device=self.device, dtype= self.VAE_dtype),
 | 
						|
                    img_interpolated2,
 | 
						|
            ], dim=1).to(self.device)
 | 
						|
        else:
 | 
						|
            enc= torch.concat([
 | 
						|
                    img_interpolated,
 | 
						|
                    torch.zeros(3, frame_num-1, h, w, device=self.device, dtype= self.VAE_dtype)
 | 
						|
            ], dim=1).to(self.device)
 | 
						|
        image_start, image_end, img_interpolated, img_interpolated2 = None, None, None, None
 | 
						|
 | 
						|
        lat_y = self.vae.encode([enc], VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0]
 | 
						|
        y = torch.concat([msk, lat_y])
 | 
						|
        lat_y = None
 | 
						|
 | 
						|
 | 
						|
        # evaluation mode
 | 
						|
        if sample_solver == 'causvid':
 | 
						|
            sample_scheduler = FlowMatchScheduler(num_inference_steps=sampling_steps, shift=shift, sigma_min=0, extra_one_step=True)
 | 
						|
            timesteps = torch.tensor([1000, 934, 862, 756, 603, 410, 250, 140, 74])[:sampling_steps].to(self.device)
 | 
						|
            sample_scheduler.timesteps =timesteps
 | 
						|
            sample_scheduler.sigmas = torch.cat([sample_scheduler.timesteps / 1000, torch.tensor([0.], device=self.device)])
 | 
						|
        elif sample_solver == 'unipc' or sample_solver == "":
 | 
						|
            sample_scheduler = FlowUniPCMultistepScheduler(
 | 
						|
                num_train_timesteps=self.num_train_timesteps,
 | 
						|
                shift=1,
 | 
						|
                use_dynamic_shifting=False)
 | 
						|
            sample_scheduler.set_timesteps(
 | 
						|
                sampling_steps, device=self.device, shift=shift)
 | 
						|
            timesteps = sample_scheduler.timesteps
 | 
						|
        elif sample_solver == 'dpm++':
 | 
						|
            sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
						|
                num_train_timesteps=self.num_train_timesteps,
 | 
						|
                shift=1,
 | 
						|
                use_dynamic_shifting=False)
 | 
						|
            sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
						|
            timesteps, _ = retrieve_timesteps(
 | 
						|
                sample_scheduler,
 | 
						|
                device=self.device,
 | 
						|
                sigmas=sampling_sigmas)
 | 
						|
        else:
 | 
						|
            raise NotImplementedError("Unsupported scheduler.")
 | 
						|
 | 
						|
        # sample videos
 | 
						|
        latent = noise
 | 
						|
        batch_size  = 1
 | 
						|
        freqs = get_rotary_pos_embed(latent.shape[1:],  enable_RIFLEx= enable_RIFLEx) 
 | 
						|
 | 
						|
        kwargs = {  'clip_fea': clip_context, 'y': y, 'freqs' : freqs, 'pipeline' : self, 'callback' : callback }
 | 
						|
 | 
						|
        if audio_proj != None:
 | 
						|
            kwargs.update({
 | 
						|
            "audio_proj": audio_proj.to(self.dtype),
 | 
						|
            "audio_context_lens": audio_context_lens,
 | 
						|
            }) 
 | 
						|
        cache_type = self.model.enable_cache
 | 
						|
        if  cache_type != None:
 | 
						|
            x_count = 3 if audio_cfg_scale !=None else 2
 | 
						|
            self.model.previous_residual = [None] * x_count
 | 
						|
            if cache_type == "tea":
 | 
						|
                self.model.compute_teacache_threshold(self.model.cache_start_step, timesteps, self.model.cache_multiplier)
 | 
						|
            else: 
 | 
						|
                self.model.compute_magcache_threshold(self.model.cache_start_step, timesteps, self.model.cache_multiplier)
 | 
						|
                self.model.accumulated_err, self.model.accumulated_steps, self.model.accumulated_ratio  = [0.0] * x_count, [0] * x_count, [1.0] * x_count
 | 
						|
                self.model.one_for_all = x_count > 2
 | 
						|
 | 
						|
        # self.model.to(self.device)
 | 
						|
        if callback != None:
 | 
						|
            callback(-1, None, True)
 | 
						|
        latent = latent.to(self.device)
 | 
						|
        for i, t in enumerate(tqdm(timesteps)):
 | 
						|
            offload.set_step_no_for_lora(self.model, i)
 | 
						|
            kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None
 | 
						|
            latent_model_input = latent
 | 
						|
            timestep = [t]
 | 
						|
 | 
						|
            timestep = torch.stack(timestep).to(self.device)
 | 
						|
            kwargs.update({
 | 
						|
                't' :timestep,
 | 
						|
                'current_step' :i,
 | 
						|
            })
 | 
						|
              
 | 
						|
            if guide_scale == 1:
 | 
						|
                noise_pred = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0]
 | 
						|
                if self._interrupt:
 | 
						|
                    return None      
 | 
						|
            elif joint_pass:
 | 
						|
                if audio_proj == None:
 | 
						|
                    noise_pred_cond, noise_pred_uncond = self.model(
 | 
						|
                        [latent_model_input, latent_model_input],
 | 
						|
                        context=[context, context_null],
 | 
						|
                        **kwargs)
 | 
						|
                else:
 | 
						|
                    noise_pred_cond, noise_pred_noaudio, noise_pred_uncond = self.model(
 | 
						|
                        [latent_model_input, latent_model_input, latent_model_input],
 | 
						|
                        context=[context, context, context_null],
 | 
						|
                        audio_scale = [audio_scale, None, None ],
 | 
						|
                        **kwargs)
 | 
						|
 | 
						|
                if self._interrupt:
 | 
						|
                    return None                
 | 
						|
            else:
 | 
						|
                noise_pred_cond = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0]
 | 
						|
                if self._interrupt:
 | 
						|
                    return None
 | 
						|
                
 | 
						|
                if audio_proj != None:
 | 
						|
                    noise_pred_noaudio = self.model(
 | 
						|
                        [latent_model_input],
 | 
						|
                        x_id=1,
 | 
						|
                        context=[context],
 | 
						|
                        **kwargs,
 | 
						|
                    )[0]
 | 
						|
                    if self._interrupt:
 | 
						|
                        return None
 | 
						|
 | 
						|
                noise_pred_uncond = self.model(
 | 
						|
                    [latent_model_input],
 | 
						|
                    x_id=1 if audio_scale == None else 2,
 | 
						|
                    context=[context_null],
 | 
						|
                    **kwargs,
 | 
						|
                )[0]
 | 
						|
                if self._interrupt:
 | 
						|
                    return None                
 | 
						|
            del latent_model_input
 | 
						|
 | 
						|
            if guide_scale > 1:
 | 
						|
                # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/
 | 
						|
                if cfg_star_switch:
 | 
						|
                    positive_flat = noise_pred_cond.view(batch_size, -1)  
 | 
						|
                    negative_flat = noise_pred_uncond.view(batch_size, -1)  
 | 
						|
 | 
						|
                    alpha = optimized_scale(positive_flat,negative_flat)
 | 
						|
                    alpha = alpha.view(batch_size, 1, 1, 1)
 | 
						|
 | 
						|
                    if (i <= cfg_zero_step):
 | 
						|
                        noise_pred = noise_pred_cond*0.  # it would be faster not to compute noise_pred...
 | 
						|
                    else:
 | 
						|
                        noise_pred_uncond *= alpha
 | 
						|
                if audio_scale == None:
 | 
						|
                    noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond)            
 | 
						|
                else:
 | 
						|
                    noise_pred = noise_pred_uncond + guide_scale * (noise_pred_noaudio - noise_pred_uncond) + audio_cfg_scale * (noise_pred_cond  - noise_pred_noaudio) 
 | 
						|
                              
 | 
						|
            noise_pred_uncond, noise_pred_noaudio = None, None
 | 
						|
            temp_x0 = sample_scheduler.step(
 | 
						|
                noise_pred.unsqueeze(0),
 | 
						|
                t,
 | 
						|
                latent.unsqueeze(0),
 | 
						|
                return_dict=False,
 | 
						|
                generator=seed_g)[0]
 | 
						|
            latent = temp_x0.squeeze(0)
 | 
						|
            del temp_x0
 | 
						|
            del timestep
 | 
						|
 | 
						|
            if callback is not None:
 | 
						|
                callback(i, latent, False) 
 | 
						|
 | 
						|
        x0 = [latent]        
 | 
						|
        video = self.vae.decode(x0, VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0]
 | 
						|
 | 
						|
        if any_end_frame and add_frames_for_end_image:
 | 
						|
            # video[:,  -1:] = img_interpolated2
 | 
						|
            video = video[:,  :-1]  
 | 
						|
 | 
						|
        del noise, latent
 | 
						|
        del sample_scheduler
 | 
						|
 | 
						|
        return video
 |