ccls/src/messages/workspace_symbol.cc

278 lines
9.8 KiB
C++
Raw Normal View History

2017-12-06 03:32:33 +00:00
#include "lex_utils.h"
#include "message_handler.h"
#include "query_utils.h"
2017-12-29 16:29:47 +00:00
#include "queue_manager.h"
2017-12-06 03:32:33 +00:00
#include <loguru.hpp>
2017-12-29 16:29:47 +00:00
#include <ctype.h>
#include <limits.h>
#include <algorithm>
#include <functional>
namespace {
// Lookup |symbol| in |db| and insert the value into |result|.
bool InsertSymbolIntoResult(QueryDatabase* db,
WorkingFiles* working_files,
SymbolIdx symbol,
std::vector<lsSymbolInformation>* result) {
2017-12-23 16:01:43 +00:00
optional<lsSymbolInformation> info =
GetSymbolInfo(db, working_files, symbol, false /*use_short_name*/);
if (!info)
return false;
optional<QueryLocation> location = GetDefinitionExtentOfSymbol(db, symbol);
if (!location) {
auto decls = GetDeclarationsOfSymbolForGotoDefinition(db, symbol);
if (decls.empty())
return false;
location = decls[0];
}
optional<lsLocation> ls_location =
GetLsLocation(db, working_files, *location);
if (!ls_location)
return false;
info->location = *ls_location;
result->push_back(*info);
return true;
}
struct Ipc_WorkspaceSymbol : public RequestMessage<Ipc_WorkspaceSymbol> {
2017-12-06 04:39:44 +00:00
const static IpcId kIpcId = IpcId::WorkspaceSymbol;
struct Params {
std::string query;
};
Params params;
2017-12-06 04:39:44 +00:00
};
MAKE_REFLECT_STRUCT(Ipc_WorkspaceSymbol::Params, query);
2017-12-06 04:39:44 +00:00
MAKE_REFLECT_STRUCT(Ipc_WorkspaceSymbol, id, params);
REGISTER_IPC_MESSAGE(Ipc_WorkspaceSymbol);
struct Out_WorkspaceSymbol : public lsOutMessage<Out_WorkspaceSymbol> {
lsRequestId id;
2017-12-12 05:20:29 +00:00
std::vector<lsSymbolInformation> result;
2017-12-06 04:39:44 +00:00
};
MAKE_REFLECT_STRUCT(Out_WorkspaceSymbol, jsonrpc, id, result);
///// Fuzzy matching
// Negative but far from INT_MIN so that intermediate results are hard to
// overflow
constexpr int kMinScore = INT_MIN / 2;
// Penalty of dropping a leading character in str
constexpr int kLeadingGapScore = -4;
// Penalty of dropping a non-leading character in str
constexpr int kGapScore = -5;
// Bonus of aligning with an initial character of a word in pattern. Must be
// greater than 1
constexpr int kPatternStartMultiplier = 2;
constexpr int kWordStartScore = 50;
constexpr int kNonWordScore = 40;
constexpr int kCaseMatchScore = 2;
// Less than kWordStartScore
constexpr int kConsecutiveScore = kWordStartScore + kGapScore;
// Slightly less than kConsecutiveScore
constexpr int kCamelScore = kWordStartScore + kGapScore - 1;
enum class CharClass { Lower, Upper, Digit, NonWord };
static CharClass GetCharClass(int c) {
2017-12-27 15:53:35 +00:00
if (islower(c))
return CharClass::Lower;
if (isupper(c))
return CharClass::Upper;
if (isdigit(c))
return CharClass::Digit;
return CharClass::NonWord;
}
static int GetScoreFor(CharClass prev, CharClass curr) {
if (prev == CharClass::NonWord && curr != CharClass::NonWord)
return kWordStartScore;
if ((prev == CharClass::Lower && curr == CharClass::Upper) ||
(prev != CharClass::Digit && curr == CharClass::Digit))
return kCamelScore;
if (curr == CharClass::NonWord)
return kNonWordScore;
return 0;
}
/*
2017-12-27 15:53:35 +00:00
fuzzyEvaluate implements a global sequence alignment algorithm to find the
maximum accumulated score by aligning `pattern` to `str`. It applies when
`pattern` is a subsequence of `str`.
Scoring criteria
2017-12-27 15:53:35 +00:00
- Prefer matches at the start of a word, or the start of subwords in
CamelCase/camelCase/camel123 words. See kWordStartScore/kCamelScore
- Non-word characters matter. See kNonWordScore
2017-12-27 15:53:35 +00:00
- The first characters of words of `pattern` receive bonus because they usually
have more significance than the rest. See kPatternStartMultiplier
- Superfluous characters in `str` will reduce the score (gap penalty). See
kGapScore
- Prefer early occurrence of the first character. See kLeadingGapScore/kGapScore
The recurrence of the dynamic programming:
dp[i][j]: maximum accumulated score by aligning pattern[0..i] to str[0..j]
dp[0][j] = leading_gap_penalty(0, j) + score[j]
2017-12-27 15:53:35 +00:00
dp[i][j] = max(dp[i-1][j-1] + CONSECUTIVE_SCORE, max(dp[i-1][k] +
gap_penalty(k+1, j) + score[j] : k < j))
The first dimension can be suppressed since we do not need a matching scheme,
which reduces the space complexity from O(N*M) to O(M)
*/
int FuzzyEvaluate(std::string_view pattern,
std::string_view str,
std::vector<int>& score,
std::vector<int>& dp) {
bool pfirst = true, // aligning the first character of pattern
pstart = true; // whether we are aligning the start of a word in pattern
int uleft = 0, // value of the upper left cell
ulefts = 0, // maximum value of uleft and cells on the left
left, lefts; // similar to uleft/ulefts, but for the next row
// Calculate position score for each character in str.
CharClass prev = CharClass::NonWord;
for (int i = 0; i < int(str.size()); i++) {
CharClass cur = GetCharClass(str[i]);
score[i] = GetScoreFor(prev, cur);
prev = cur;
}
std::fill_n(dp.begin(), str.size(), kMinScore);
// Align each character of pattern.
2017-12-27 15:53:35 +00:00
for (unsigned char pc : pattern) {
if (isspace(pc)) {
pstart = true;
continue;
}
lefts = kMinScore;
// Enumerate the character in str to be aligned with pc.
for (int i = 0; i < int(str.size()); i++) {
left = dp[i];
lefts = std::max(lefts + kGapScore, left);
// Use lower() if case-insensitive
if (tolower(pc) == tolower(str[i])) {
int t = score[i] * (pstart ? kPatternStartMultiplier : 1);
dp[i] = (pfirst ? kLeadingGapScore * i + t
: std::max(uleft + kConsecutiveScore, ulefts + t)) +
(pc == str[i] ? kCaseMatchScore : 0);
} else
dp[i] = kMinScore;
uleft = left;
ulefts = lefts;
}
pfirst = pstart = false;
}
// Enumerate the end position of the match in str. Each removed trailing
// character has a penulty of kGapScore.
lefts = kMinScore;
for (int i = 0; i < int(str.size()); i++)
lefts = std::max(lefts + kGapScore, dp[i]);
return lefts;
}
2017-12-06 03:32:33 +00:00
struct WorkspaceSymbolHandler : BaseMessageHandler<Ipc_WorkspaceSymbol> {
void Run(Ipc_WorkspaceSymbol* request) override {
Out_WorkspaceSymbol out;
out.id = request->id;
LOG_S(INFO) << "[querydb] Considering " << db->symbols.size()
2017-12-06 03:32:33 +00:00
<< " candidates for query " << request->params.query;
std::string query = request->params.query;
std::unordered_set<std::string> inserted_results;
// db->detailed_names indices of each lsSymbolInformation in out.result
std::vector<int> result_indices;
std::vector<lsSymbolInformation> unsorted_results;
2017-12-06 03:32:33 +00:00
inserted_results.reserve(config->maxWorkspaceSearchResults);
result_indices.reserve(config->maxWorkspaceSearchResults);
2017-12-06 03:32:33 +00:00
// We use detailed_names for exact matches and short_names for fuzzy matches
// because otherwise the fuzzy match is likely to match on parameter names
// and the like.
// TODO: make detailed_names not include function parameter information (or
// introduce additional metadata) so that we can do fuzzy search with
// detailed_names.
// Find exact substring matches.
for (int i = 0; i < db->symbols.size(); ++i) {
std::string_view detailed_name = db->GetSymbolDetailedName(i);
if (detailed_name.find(query) != std::string::npos) {
2017-12-06 03:32:33 +00:00
// Do not show the same entry twice.
if (!inserted_results.insert(std::string(detailed_name)).second)
2017-12-06 03:32:33 +00:00
continue;
2017-12-27 15:53:35 +00:00
if (InsertSymbolIntoResult(db, working_files, db->symbols[i],
&unsorted_results)) {
result_indices.push_back(i);
if (unsorted_results.size() >= config->maxWorkspaceSearchResults)
break;
}
2017-12-06 03:32:33 +00:00
}
}
// Find subsequence matches.
if (unsorted_results.size() < config->maxWorkspaceSearchResults) {
std::string query_without_space;
query_without_space.reserve(query.size());
2017-12-27 15:53:35 +00:00
for (char c : query)
if (!isspace(c))
query_without_space += c;
for (int i = 0; i < db->symbols.size(); ++i) {
if (SubsequenceMatch(query_without_space, db->GetSymbolShortName(i))) {
2017-12-06 03:32:33 +00:00
// Do not show the same entry twice.
if (!inserted_results.insert(std::string(db->GetSymbolDetailedName(i))).second)
2017-12-06 03:32:33 +00:00
continue;
2017-12-27 15:53:35 +00:00
if (InsertSymbolIntoResult(db, working_files, db->symbols[i],
&unsorted_results)) {
result_indices.push_back(i);
if (unsorted_results.size() >= config->maxWorkspaceSearchResults)
break;
}
2017-12-06 03:32:33 +00:00
}
}
}
if (config->sortWorkspaceSearchResults) {
// Sort results with a fuzzy matching algorithm.
int longest = 0;
for (int i : result_indices)
longest = std::max(longest, int(db->GetSymbolShortName(i).size()));
std::vector<int> score(longest); // score for each position
2018-01-11 02:43:01 +00:00
std::vector<int> dp(
longest); // dp[i]: maximum value by aligning pattern to str[0..i]
std::vector<std::pair<int, int>> permutation(result_indices.size());
for (int i = 0; i < int(result_indices.size()); i++) {
permutation[i] = {
FuzzyEvaluate(query, db->GetSymbolShortName(result_indices[i]), score, dp),
i};
}
std::sort(permutation.begin(), permutation.end(),
std::greater<std::pair<int, int>>());
out.result.reserve(result_indices.size());
for (int i = 0; i < int(result_indices.size()); i++)
2018-01-11 02:43:01 +00:00
out.result.push_back(
std::move(unsorted_results[permutation[i].second]));
} else {
out.result.reserve(unsorted_results.size());
for (const auto& entry : unsorted_results)
out.result.push_back(std::move(entry));
}
2017-12-06 03:32:33 +00:00
LOG_S(INFO) << "[querydb] Found " << out.result.size()
<< " results for query " << query;
2017-12-24 00:25:18 +00:00
QueueManager::WriteStdout(IpcId::WorkspaceSymbol, out);
2017-12-06 03:32:33 +00:00
}
};
REGISTER_MESSAGE_HANDLER(WorkspaceSymbolHandler);
} // namespace