ccls/src/threaded_queue.h

137 lines
3.6 KiB
C
Raw Normal View History

2017-03-25 19:18:25 +00:00
#pragma once
2017-03-25 20:32:44 +00:00
#include <optional.h>
2017-03-25 19:18:25 +00:00
#include <algorithm>
#include <atomic>
2017-03-25 19:18:25 +00:00
#include <queue>
#include <mutex>
#include <condition_variable>
2017-03-25 20:32:44 +00:00
// TODO: cleanup includes.
struct BaseThreadQueue {
virtual bool IsEmpty() = 0;
};
struct MultiQueueWaiter {
std::mutex m;
std::condition_variable cv;
bool HasState(std::initializer_list<BaseThreadQueue*> queues) {
for (BaseThreadQueue* queue : queues) {
if (!queue->IsEmpty())
return true;
}
return false;
}
void Wait(std::initializer_list<BaseThreadQueue*> queues) {
// We cannot have a single condition variable wait on all of the different
// mutexes, so we have a global condition variable that every queue will
// notify. After it is notified we check to see if any of the queues have
// data; if they do, we return.
//
// We repoll every 5 seconds because it's not possible to atomically check
// the state of every queue and then setup the condition variable. So, if
// Wait() is called, HasState() returns false, and then in the time after
// HasState() is called data gets posted but before we begin waiting for
// the condition variable, we will miss the notification. The timeout of 5
// means that if this happens we will delay operation for 5 seconds.
while (!HasState(queues)) {
std::unique_lock<std::mutex> l(m);
cv.wait_for(l, std::chrono::seconds(5));
}
}
};
2017-03-25 19:18:25 +00:00
// A threadsafe-queue. http://stackoverflow.com/a/16075550
template <class T>
struct ThreadedQueue : public BaseThreadQueue {
2017-03-25 19:18:25 +00:00
public:
ThreadedQueue(MultiQueueWaiter* waiter) : waiter_(waiter) {}
// Add an element to the front of the queue.
void PriorityEnqueue(T&& t) {
std::lock_guard<std::mutex> lock(mutex_);
priority_.push(std::move(t));
waiter_->cv.notify_all();
}
2017-03-25 19:18:25 +00:00
// Add an element to the queue.
void Enqueue(T&& t) {
2017-03-25 19:18:25 +00:00
std::lock_guard<std::mutex> lock(mutex_);
queue_.push(std::move(t));
waiter_->cv.notify_all();
2017-03-25 19:18:25 +00:00
}
// Return all elements in the queue.
std::vector<T> DequeueAll() {
std::lock_guard<std::mutex> lock(mutex_);
std::vector<T> result;
result.reserve(priority_.size() + queue_.size());
while (!priority_.empty()) {
result.emplace_back(std::move(priority_.front()));
priority_.pop();
}
while (!queue_.empty()) {
result.emplace_back(std::move(queue_.front()));
queue_.pop();
}
return result;
}
bool IsEmpty() {
std::lock_guard<std::mutex> lock(mutex_);
return queue_.empty();
}
/*
2017-03-25 19:18:25 +00:00
// Get the "front"-element.
2017-03-25 20:32:44 +00:00
// If the queue is empty, wait untill an element is avaiable.
2017-03-25 19:18:25 +00:00
T Dequeue() {
std::unique_lock<std::mutex> lock(mutex_);
while (priority_.empty() && queue_.empty()) {
2017-03-25 19:18:25 +00:00
// release lock as long as the wait and reaquire it afterwards.
cv_.wait(lock);
}
if (!priority_.empty()) {
auto val = std::move(priority_.front());
priority_.pop();
return val;
}
auto val = std::move(queue_.front());
2017-03-25 19:18:25 +00:00
queue_.pop();
return val;
}
*/
2017-03-25 19:18:25 +00:00
2017-03-25 20:32:44 +00:00
// Get the first element from the queue without blocking. Returns a null
// value if the queue is empty.
2017-03-25 19:18:25 +00:00
optional<T> TryDequeue() {
std::lock_guard<std::mutex> lock(mutex_);
if (priority_.empty() && queue_.empty())
2017-03-25 19:18:25 +00:00
return nullopt;
if (!priority_.empty()) {
auto val = std::move(priority_.front());
priority_.pop();
2017-04-21 00:16:54 +00:00
return std::move(val);
}
auto val = std::move(queue_.front());
2017-03-25 19:18:25 +00:00
queue_.pop();
2017-04-14 22:30:33 +00:00
return std::move(val);
2017-03-25 19:18:25 +00:00
}
2017-03-25 20:32:44 +00:00
private:
std::queue<T> priority_;
2017-03-25 19:18:25 +00:00
mutable std::mutex mutex_;
std::queue<T> queue_;
MultiQueueWaiter* waiter_;
2017-03-25 19:18:25 +00:00
};